
ACCELERATION AND IMPLEMENTATION OF JPEG2000 ENCODER ON TI DSP
PLATFORM

Chien-Chih Liu and Hsueh-Ming Hang

Electronics Engineering Department, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.
ccliu.iic93g@nctu.edu.tw, hmhang@mail.nctu.edu.tw

This work was partially supported by National Science Council, Taiwan, R.O.C., under Grant NSC-94-2213-E-009-144.

ABSTRACT

JPEG2000 provides excellent compression performance and
fine granularity scalability but at the cost of high
computational complexity. We propose two speed-up
techniques and use the TI DSP optimization tools to
accelerate the Tier1 module. We eliminate the unnecessary
checking cycles by recording the NBC (Need-to-Be-Coded)
samples on a list. Furthermore, the sample index is
reordered to facilitate fast execution. In the DSP
implementation of the proposed methods, we use code
acceleration techniques, cache memory allocation, and TI
DSP compiler-level optimization tools. Even when the
original program is compiled with the same DSP
optimization tools and proper cache assignment, our fast
algorithm can still reduce the computation by 45%.

Index Terms— JPEG200, DSP, algorithm acceleration

1. INTRODUCTION
In contrast to the discrete cosine transform (DCT) used in
the JPEG standard, the JPEG2000 standard [1] implements
an entirely new way of compressing images based on the
wavelet transform. It supports lossy and lossless
compression of single-component (gray-level) and multi-
component (color) images. The major operation blocks of
the JPEG2000 encoding system are shown in Figure 1. The
pre-processing includes the image tiling, DC-Level shifting,
and component transform. The component transform and
the discrete wavelet transform have both the irreversible
mode and the reversible mode used for lossy and lossless
coding, respectively. The entropy coding part of JPEG2000
adopts the EBCOT technique (Embedded Block Coding
with Optimized Truncation) [2]. It consists of two major
coding steps, Tier-1 and Tier-2. The Tier-1 part is an
embedded block coding scheme consists of the context
formation (CF) and the arithmetic encoder (AE). The Tier-2
and rate-control part adopts the PCRD (Post-Compression
Rate-Distortion) optimization to truncate the embedded bit-
stream to minimize the overall distortion.

Pre-Processing

Input
Image Forward Discrete

Wavelet Transform

Uniform Scalar
QuantizationTier-1Tier-2

Rate-Control

Coded
Image

Tiling DC-Level shifting Component TransformTiling DC-Level shifting Component Transform

Real mode
Integer mode
Real mode

Integer mode

ScalabilityScalability

Figure 1 JPEG2000 encoder architecture

2. ENCODER COMPLEXITY ANALYSIS
We implement a JPEG2000 encoder on a DSP platform
including two Sundance modules, SMT395 (TI
TMS320C6416T DSP) and SMT310. We start with the
OpenJPEG (ver.1.0) [3] reference software in C language.
Then, the TI CCS (Code Composer Studio ver.3.1) [4] is
used to compile the C codes and profile the encoder
complexity.

2.1. Profiling results
TI CCS provides many simulation tools. The C64xx CPU
cycles accurate simulator assumes a flat memory system in
simulating the C64xx processor. In contrast, the C6416
device cycle accurate simulator can provide an accurate
simulation on the C6416 processor, peripherals, and
memory system.

Table I Profiling lossless encoding results using two
simulators (Goldhill 512x512)

Simulator C64xx % C6416 % Ratio
DWT 73,327,701 7.8 552,674,115 6.7 13 %
Tier1 846,100,912 90.9 7,509,481,733 91.7 11%
Tier2 1,550,147 <1 15,933,932 <1 9%

Others 9,475,720 1 103,399,183 1.2 9%
Total 930,454,480 100 8,181,488,963 100 11%

III - 3291-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

We profile the OpenJPEG encoder by using these two
simulators as shown in Table I. The profiling results show
that Tier1 module is the most complex part in the encoder.
Also, the total cycles of the C64xx simulator are only 11%
of that of the C6416 simulator. We calculate the execution
time based on the cycles generated by TI C6416 simulator.
It takes about 8.18 sec and the actual running time of the
emulator (DSP hardware platform) also takes about 8.74 sec.

2.2. Block coding analysis
The Tier1 module takes the most of total cycles in the
JPEG2000 algorithm and the block coding procedure is the
main part in the Tier1 module. Details of the block coding
process are described in [2]. Each bit-plane of the wavelet
outputs is coded by 3 passes. We collect the statistics of
these Pass processes on an image in Figure 2. For each bit-
plane, we count the numbers of samples coded by each Pass.
The most-significant-bit plane of every sample can be
different. At the higher bit-planes, Pass3 is most active and
its activity reduces to nearly zero rapidly. The Pass1 and
Pass2 processes encode about a quarter of all samples as
shown in Table II. According to the standards, each Pass
needs to check the state of every sample and encodes the
NBC (need-to-be-coded) samples with designated context
labels. Since only a small percentage of samples are truly
coded in each pass, most checking cycles are wasted.

Figure 2 Analysis of Pass contributions
(Gray-level Baboon, 512x512)

Table II Coded samples in each Pass processes
Image Pass1 process Pass2 process Pass3 process
Goldhill 24 % 22 % 54 %
Barb 22 % 24 % 54 %
Lena 22 % 17 % 61 %
Baboon 26 % 36 % 38 %

2.3. Major encumbrances and known speed-up methods

According to the profiling results, firstly we have to
decrease the memory accessing time. Accessing the external
memory causes many stall cycles in the total executing
cycles. Our DSP platform has 1 Mbytes internal memory.
We can turn on the Level-2 cache and modify the data
structure to improve the utilization rate of the internal
memory. Secondly we like to reduce the execution cycles of
the Tier1 module. There are several known speed-
improving methods such as the CUPS (Clean Up Pass
Skipping) and the PP (Pass Predicting) [5] [6], the SS
(Sample Skipping) and the GOCS (Group Of Column
Skipping) methods [7], and the PPP (Pipelined Processing
of Pass) method [8] [9].

3. PROPOSED SPEED-UP METHODS

3.1. VGOSS (Variable-Group-Of-Sample-Skip)
Extended from known methods, we propose a method to
improve the block coding process and call it VGOSS
(Variable-Group-Of-Sample-Skip) [10]. We first rearrange
the code-block samples and set up a flag-block as shown in
Figure 3. The Code-block records each sample in a block.
The Flag-Block records the context orientation and the
already-visited information for each bit-plane. It is also
expanded and padded with shaded samples shown in Figure
4 to include the neighboring samples. This rearrangement
does not change the coding performance; it costs few cycles
in conversion but saves a lot of cycles later.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 8 9 10

13 14 15 16

19 20 21 22

25 26 27 28

6

12

18

24

11

17

23

29

31 32 33 3430 35

1 2 3 40 5

Code-Block Flag-Block

Context orientation and
visited information

Figure 3 Code-Block and Flag-Block

Code-Block

0 1 2 34 5 6 78 9 10 1112 13 14 15

Code-Block

0 1 2 34 5 6 78 9 10 1112 13 14 15

7 26 32 3825 31 37 43 44

19 2 8 1413

Flag-Block

6 12 18 10 7

30 36 4224 27 33 39

3 9 1520

7 26 32 3825 31 37 43 44

19 2 8 1413

Flag-Block

6 12 18 10 7

30 36 4224 27 33 39

3 9 1520

Index
0

Index
1

Figure 4 Rearranged Code-Block and Flag-Block

III - 330

Then, the Flag-Block updating procedure is modified for the
rearranged Flag-Block as shown in Figure 5. There are four
samples in a stripe and four cases are executed. The
modified procedure takes about 62% in calculation
comparing to the original one.

hint = 0x3&(current coordinate x)
*fp = current flag pointer
s = current significance
*np = fp - (code-block width + 5)
*sp = fp + (code-block width + 5)

switch (hint)
case 0x00:
case 0x01:
case 0x02:
case 0x03:

hint = 0x3&(current coordinate x)
*fp = current flag pointer
s = current significance
*np = fp - (code-block width + 5)
*sp = fp + (code-block width + 5)

switch (hint)
case 0x00:
case 0x01:
case 0x02:
case 0x03:

Figure 5 Modified updating procedure

The VGOSS flowchart is given in Figure 6. Each coding
block is rearranged. Three pass processes are executed
repetitively until all bit-planes are coded. The Pass1 process
checks the states of all samples and records the offsets of
NBC in a VGOSS table as results of the other two processes.

Enter
Block Coding

Rearrange
Block

Initialization

Pass3 without
checking

Pass1
Record offsetNext BP?

Pass2 without
checking

End

Y

N

Figure 6 VGOSS flowchart

Thus, the following Pass2 and Pass3 processes can encode
the NBC samples without checking the flag-block as shown
in Figure 7. If the associated list is empty, the process can
be skipped.

0

1

2

3

4

5

8

9

6 10

7 11

12

13

14

15

16

17

18

19

5 6 8 VGOSS Table

While (VGOSS table is not empty)
{

Code a symbol;
}

Figure 7 Coding without checking states

Our method is different from the PP method. We do not
compare three tables in a pass process and there is no
missing sample in our algorithm. Our algorithm can skip

Pass3 without extra effort. Also, the fixed group size in
GOCS is not efficient on our implementation [10] and the
experimental results in [7] also give the similar result. We
test the GOCS and SS method on our DSP platform. The
experimental results are discussed in Section 4.

3.2. Modified VGOSS

According to the PP method, the absolute coordinates are
recorded in the prediction table. It may become more
efficient if the missing sample and the sorting problems can
be solved. We thus modify the VGOSS method to record
the absolute address in a code-block. Basically, all the pass
procedures are similar to the original VGOSS procedure.
Only the Pass1 procedure is modified as shown in Figure 8,
and all pass processes use the absolute index in the VGOSS
table.

Enter
Block Coding

Rearrange
Block

Initialization

Pass3 without
checking

Pass1
Record indexNext BP?

Pass2 without
checking

End

Y

N

Enter
Block Coding

Rearrange
Block

Initialization

Pass3 without
checking

Pass1
Record indexNext BP?

Pass2 without
checking

End

Y

N

Figure 8 Modified VGOSS flowchart

3.3. Software speed-up techniques
We use a few intrinsic SIMD (Single Instruction Multiple
Data) functions of TI DSP to improve the speed [4]. Thus,
two short type string data can be executed at the same time.
Furthermore, the JPEG 2000 arithmetic coding algorithm
contains sequential processing steps, nested conditional
operations, and inner while loops. The LMBD intrinsic
function can reduce the complexity of RENORME function
as well [11]. Appropriate data allocation improves the
memory accessing by the DATA_SECTION and the
CODE_SECTION. The direct internal memory access is
still faster than using the L2 cache. Therefore, proper
memory allocation in different memory banks is critical for
the overall speed. In addition, we unroll the loops, modify C
code style, and use UNROLL pragma [4].

4. EXPERIMENTAL RESULTS
The proposed algorithm is added on the OpenJPEG ver.1.0
encoder and tested on the TI DSP platform. Four test images
are tested for lossless encoding. The TI compiler-level is set
on the highest level (file-level) optimization. The L2 cache
is adopted as well. We also implement the GOCS and SS
methods using the same environment as marked “M1”. The

III - 331

VGOSS method is marked as “M2” and the modified
VGOSS method is marked as “M3”. When the software
speed-up techniques are included, they are marked as
“M2+” and “M3+”. The simulation results on the C64xx
and the C6416 simulators are shown in Figure 9 and Figure
10. The experimental results on the hardware platform are
shown in Figure 11. Comparing all the experimental results,
they are consistent with our prediction.

Tier1 Ratio (New/Original) on C64xx simulator

0%

10%

20%

30%

40%

50%

60%

70%

80%

Goldhill Barb Lena Baboon

M1
M2
M2+
M3
M3+

Figure 9 Comparison on C64xx simulator

Tier1 Ratio (New/Original) on C6416 simulator

0%

10%

20%

30%

40%

50%

60%

70%

80%

Goldhill Barb Lena Baboon

M1
M2
M2+
M3
M3+

Figure 10 Comparison on C6416 simulator

5. CONCLUSIONS
The proposed VGOSS method is constructed on the re-
ordered code-block samples and is a combined extension of
the GOCS and PP methods. It encodes only the NBC (need-
to-be-coded) samples and thus reduces the checking cycles
in the original pass processes. It is easy and simple to
implement and has a good performance on the TI DSP
platform. If the DSP compiler-level optimization technique
is applied to the original codes, our proposed method can
still reduce about 45% computation. The improvement is
mainly due to two factors, (1) our proposed VGOSS method
and (2) the software speed-up techniques. In summary, the
memory bottleneck is still a challenge to the embedded
system. The speed gap between the idea cycles and real

cycles indicates that there is still room for improvement to
accelerate the JPEG2000 algorithm on different types of the
embedded systems.

Tier1 Ratio (New/Original) on Emulator

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Goldhill Barb Lena Baboon

M1
M2+
M3+

Figure 11 Comparison on hardware platform

7. REFERENCES
[1] JPEG2000 Part I Final Draft International Standard (ISO/IEC
FDIS 15444-1). ISO/IEC JTC1/SC29/WG11 N1855, Aug.2000.
[2] D. Taubman and et al, ”Embedded Block Coding in
JPEG2000”, in Proceedings of IEEE International Conference on
Image Processing, vol. 2, Vancouver, Canada, Sept. 2000, pp.33-
36
[3] http://www.openjpeg.org/index.php?menu=main
[4] Texas Instruments, TMS320C6000 Programmer’s Guide,
Literature number SPRU198I, Mar. 2006.
[5] K.L. Lin, Analysis and Architecture Design for JPEG2000 Still
Image Encoding System, M.S. thesis, Department of Electrical
Engineering, National Central University, Chung-Li, Taiwan, ROC,
2002.
[6] T.H. Tsai and L.T. Tsai, “JPEG2000 Encoder Architecture
Design with Fast EBCOT Algorithm”, IEEE VLSI-TSA
International Symposium, page 279-282, April 2005.
[7] C.J. Lian and et al, “Analysis and Architecture Design of
Block-coding Engine for EBCOT in JPEG2000”, IEEE
Transactions on Circuits and Systems for Video Technology, Vol.
13, No. 3, March 2003.
[8] B.D. Choi, and et al, “DSP Implementation of Real-time
JPEG2000 Encoder Using Overlapped Block Transferring and
Pipelined Processing”, International Conference on High
Performance Computing (HiPC) 2004, Vol. 3296, page 333-341.
[9] J.K. Cho and et al, “Fast DSP implementation of JPEG2000”,
TENCON 2004, Vol. A, page 231-234 Vol. 1, Nov. 2004.
[10] C.C.Liu, Acceleration and Implementation of JPEG2000
Encoder on TI DSP Platform, M.S. thesis, College of Electrical
and Computer Engineering, National Chiao Tung University,
Hsinchu, Taiwan, ROC, 2006
[11] B. Valentine and O. Sohm, “Optimizing the JPEG2000 Binary
Arithmetic Encoder for VLIW Architectures”, IEEE International
Conference on International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), Vol. 5, P.5, May 2004

III - 332

