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ABSTRACT

Different from appearance-based methods, clustering fea-

ture points only by their motion coherence is an emerging

category of approach to detecting and tracking individuals

among crowds. This paper reformalizes the problem and mod-

els a novel objective function for clustering with potential

functions as in conditional random field approach. The merits

include: 1) it integrates motion, spatial, temporal information;

2) the parameters are automatically obtained by supervised

learning; 3) the objective function is based on feature-pair in-

formation, which enables effective learning on small amount

of training data, as well as very fast online processing speed.

Detection ROC curves are given on several datasets (includ-

ing the CAVIAR set).

Index Terms— Motion detection, multi-object tracking,

clustering

1. INTRODUCTION

Most recently there have been a few inspiring works on de-

tecting individuals among crowds only by motion information

[1][2]. Namely, based on the assumption that points that ap-

pears to move together is likely to be part of the same object,

these algorithms cluster tracked feature points into detected

objects by analyzing their motion coherence. The results are

very encouraging and reveal the great potential of the motion

cue alone.

This kind of approaches can be divided into two steps:

tracking local features and clustering them. While the first

step can be done by some well-established methods, the sec-

ond step is the core of the approach. For the clustering step,

[1] and [2] have some common elements: 1) they use spatial

proximity in a form of distance tree or connectivity graph,

which is built by thresholding on the max distance of fea-

ture pairs within a time window; 2) they define a measure of

motion coherence and then use this measure to cluster neigh-

boring features or clusters in the spatial tree or graph. For the

measure of motion, [1] uses the variance of features’ distance

in history, while [2] groups trajectories which share an affine

movement by RANSAC. These methods are both featured by

their unsupervised manner.

Original Frame                        Tracked Features                        Motion Clusters

S C

S1

S2

S3
S4

Fig. 1. Problem formalization.

While we focus on the same aim of detecting objects by

motion analysis, we view this problem differently – as a clas-
sification or labeling problem. Motion characteristic or spa-

tial relationship of feature points is essentially a type of evi-

dence or observation (just like appearance), and the objective

is to discriminate feature points which belongs to the same

object from those which not. Therefore, we use supervised

statistical learning to model the likelihood of whether a pair

of features is on one object as the function of motion coher-

ence or spatial relationship. These learned likelihoods are

then integrated in one objective function to guide the hier-

archical clustering. In fact, for different applications, such

learning mechanism not only automatically adapts the algo-

rithm to the specific scene, but also reveals the effectiveness

of spatial-motion evidence by the separability of learned dis-

tributions of intra-object and extra-object classes.

2. PROBLEM PREPRESENTATION

Denote the trajectory of each local feature point by X =
{(x0, y0), (x1, y1), . . . , (xT , yT )}, and the set of all trajecto-
ries by S = {X1, . . . , Xn}. Our problem is to find a “opti-
mal” set partition of S. Denote the partition as C = {S1, S2,
. . . , Sk}, which is a collection of disjoint subsets of S , and
each Si includes feature points which belong to the same ob-
ject (Fig.1). Typically under the Bayesian framework, the
“optimal” partition can be defined as

Ĉ = arg max
C

p(C|S), (1)

where S can be viewed as the observation and C is the latent
variable. Further, when dealing with sequential data, we have
C̄t = {C1, . . . , Ct} and S̄t = {S1, . . . , St}. By following
Bayesian sequential estimation with Markov assumption, the
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objective becomes

ˆ̄Ct = arg max
C̄t

p(C̄t|S̄t), (2)

p(Ct|S̄t) ∝ p(St|Ct)

Z
p(Ct|Ct−1)p(Ct−1|S̄t−1)dCt−1. (3)

Although it is common practice to use sampling techniques
[3] to calculate the integral part in (3) , it is not feasible here
because the number of all possible Ct−1 is combinatorial ex-
plosive. Therefore we instead estimate Ct by frame-wise greedy
optimization based on the result from previous frame:

Ĉt = arg max
Ct

p(St|Ct)p(Ct|Ĉt−1). (4)

The objective function (4) and the optimization algorithm

are two vital parts which determine the performance of the

system. In the following sections, we show how supervised

learning can be used to adapt both parts to specific application

scenes.

3. MODELING THE OBJECTIVE FUNCTION

The objective function is modeled as the product of probabil-
ities associated with feature point pairs:

f(Ct) = p(St|Ct)p(Ct|Ĉt−1)

=
Y

Xi,Xj∈St

“
p(Xi, Xj |ci,t, cj,t)p(ci,t, cj,t|ĉi,t−1, ĉj,t−1)

”
, (5)

where ci,t is the label of the subset which Xi belongs to, in
the partition Ct. We further represent it in the form of the sum
of different potential functions:

log (f(Ct)) =
X

Xi,Xj∈St

“ motion coherencez }| {
φ(Xi, Xj , ci,t, cj,t)

+

spatialz }| {
ψ(Xi, Xj , ci,t, cj,t) +

temporal inertiaz }| {
λ(ci,t, cj,t, ĉi,t−1, ĉj,t−1)

”
− log Z. (6)

Each potential function models a type of useful informa-

tion, and their parameters should be learned from data. This

form is quite like that of a conditional random field [5][6],

for which the parameters are learned by gradient ascent to

maximize the conditional probability of the true Ct given the

labeled training sequence. However, it is difficult to calcu-

late or approximate the normalization (partition function) Z
in our problem settings. Hence we choose to learn each po-

tential function independently as follows.
Motion potential. Similar to [1], we assume that two fea-

ture points are more likely to be on the same object if the vari-
ance of distance is small. The variance V ar(Xi, Xj) is cal-
culated in Xi and Xj’s overlap frames, and mapped to (0, 1]
by Q(Xi, Xj) = 1/ (1 + V ar(Xi, Xj)) . However, unlike
in [1] where Q(·) is directly used as the motion likelihood,
here the likelihood is learned as piece-wise functions of Q(·)

(a) Oringal scenes.

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

Q(Xi,Xj)

p
φ,pos

p
φ,neg

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

Q(Xi,Xj)

p
φ,pos

p
φ,neg

(b) Motion likelihood:
pφ,pos and pφ,neg .
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(c) Spatial likelihood:
pψ,pos/pψ,neg .

Fig. 2. Motion and spatial likelihoods learned from different scenes

(CAVIAR[4] and SOCCER).

(see Fig.2(b), pφ,pos for pairs which belong to the same object
and pφ,neg for those which not), from feature pairs in training
sequence. Hence the motion potential can be calculated as

φ(Xi, Xj , ci,t, cj,t) =j
log pφ,pos(Q(Xi, Xj)), if ci,t = cj,t;
log pφ,neg(Q(Xi, Xj)), else.

(7)

Spatial potential. Relative position of two feature points
can be informative for clustering, since in many applications
the rough shape or size of target objects are quite stable. We
use the horizontal and vertical distance of two features as
the basic spatial evidence. Again piece-wise functions are
learned for feature pairs which belong to the same object or
not respectively (see Fig.2(c)).

ψ(Xi, Xj , ci,t, cj,t) =j
log pψ,pos(|xi,t − xj,t|, |yi,t − yj,t|), if ci,t = cj,t;
log pψ,neg(|xi,t − xj,t|, |yi,t − yj,t|), else.

(8)

Temporal potential. For sequential data, temporal smooth-
ness is a natural assumption. Temporal potential helps reduce
the “jumpy” assignment of feature points in frame-independent
motion detection. From the training sequence it is easy to
learn the probability pλ of two features remaining the state of
whether or not belonging to the same object in two consecu-
tive frames. pλ is usually a value quite close to 1.

λ(ci,t, cj,t, ĉi,t−1, ĉj,t−1) =8<
:

log pλ, if (ci,t = cj,t and ĉi,t−1 = ĉj,t−1),
or (ci,t �= cj,t and ĉi,t−1 �= ĉj,t−1);

log (1 − pλ), else.
(9)

The above feature pair based objective function has two

major advantages: 1) it does not require large amount of train-

ing data, because m frames of n feature points will provide

mn(n−1)/2 feature pairs for learning the parameters; 2) it is

especially efficient to compute for the clustering process, as

will be introduced in the next subsection.
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(a) Γ = 2.5. (b) Γ = 2. (c) Γ = 1.

Fig. 3. Different stages of hierarchical clustering.

4. HIERARCHICAL CLUSTERING

Since enumerating all possible partitions of St to find the op-

timal Ct is obviously intractable, we use hierarchical cluster-

ing. It is a greedy strategy similar to [1], in the sense that we

merge two subsets if the resulting objective function value is

larger than leaving them split.
If two subsets Su and Sv (Su, Sv ⊂ St) are merged, the

change of objective function value is

Δu,v =
X

Xi∈Su,Xj∈Sv

(Δmotion
u,v + Δspatial

u,v + Δtemporal
u,v ) (10)

=
X

Xi∈Su,Xj∈Sv

“
φ(Xi, Xj , u, u) − φ(Xi, Xj , u, v)

+ψ(Xi, Xj , u, u) − ψ(Xi, Xj , u, v)

+λ(u, u, ĉi,t−1, ĉj,t−1) − λ(u, v, ĉi,t−1, ĉj,t−1)
”

(11)

This Δu,v is calculated for every (Su, Sv) pair, during
each round of merging. For fast computation, we keep the
Δ values for all the pairs, and update them whenever a merge
occurs. Fortunately, the update process is very efficient. Ac-
cording to (11), if Su and Sv are merged to become Su′ , for
any other subset Sw, we will have

Δu′,w = Δu,w + Δv,w (12)

In other words, whenever two subsets are merged, only n
times of addition is needed to update all Δ values (where n is

the current number of subsets). Note that (12) also applies to

Δmotion, Δspatial and Δtemporal individually.

Now that we have Δ as the discriminant function to decide

whether two subsets should be merged or not, a simple strat-

egy is to iteratively select the subset pair with the maximum

Δ and merge them, until all Δ’s are below zero. However, in

experiments the result is not always satisfactory, because: 1)

the objective function is learned by assuming independency

between each potential function, hence is not very accurate;

2) there is no backtracking during clustering, therefore the

order in which subsets are merged may also affect the final

result.

Therefore some heuristic and adjustment are made to make

the algorithm more flexible: 1) a threshold Γ is added so that

clustering continues as long as there is some Δ > Γ; 2) sub-

sets with large Δspatial are considered to be merged first, to

achieve better spatial integrity of the final partition. The algo-

rithm is shown in Table 1.

For each frame, do:

• Track features and cluster them spatially into tiny subsets (to reduce

problem size).

• Calculate Δ values for each subset pair by (11).

• While there still exists subset pair which satisfy the merge condition:

Δ > Γ, do:

– Find max{Δspatial} among all subset pairs which satisfy

the merge condition: Δ > Γ.

– Find the subset pair (Su, Sv) with the maximumΔu,v , while

satisfying Δspatial
u,v > max{Δspatial} − β.

– Merge Su and Sv .

– Update Δ values for each existing subset pair by (12).

Table 1. The clustering algorithm

Algorithm / Dataset Processing time per frame

Algorithm of [1] / – 10 sec. to 3 min. (clustering only,

reported in [1])

Ours / CAVIAR (384x288) 0.08 sec. (overall)

Ours / SOCCER (320x240) 0.07 sec. (overall)

Table 2. Processing speed (tested on P4 2.8GHz CPU).

The algorithm parameters such as Γ and β are selected by

running the algorithm multiple rounds with different settings,

and evaluating its performance on the training data. This re-

sults in ROC curves shown in Fig.5, from which suitable pa-

rameter set can be chosen for specific application.

5. EXPERIMENTS

Before clustering, feature points are selected by FAST fea-

ture detector [7][8] and tracked by [9]’s implementation of

Kanade-Lucase-Tomasi tracker. Our algorithm is implemented

in C++. See Table 2 for a comparison of speed.

Detection results. Two testing sets are evaluated: CAVIAR

[4] (33932 frames for testing, all with groundtruth; 1000 frames

for training) and SOCCER (collected from TV programs, 2364

frames for testing, manually labeled 1 frame out of every 12

frames; 200 frames for training). By changing the parameters

Γ and β, ROC curves are obtained for each dataset (Fig.5),

and some results are shown in Fig.4. The ROC curve of SOC-

CER is significantly better than CAVIAR, which can be ex-

plained by the learned motion likelihood in Fig.2: the sepa-

rability of intra-object and extra-object feature pairs of SOC-

CER is clearly better than that of CAVIAR. This is because in

CAVIAR, motion of different entities are less salient than in

SOCCER, and the motion of body-parts also undermines the

rigid body assumption.

When motion information is not very discriminative, spa-

tial model can improve performance, Fig.6 shows an example.

Tracking and counting passed objects. By connecting

largely overlapping clusters in consecutive frames, objects

can be tracked temporally. We can both estimate the num-

ber of objects present in each frame, and count the objects
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(a) Samples from SOCCER dataset. (b) Samples from CAVIAR dataset.

Fig. 4. Results of object detection on SOCCER and CAVIAR dataset.
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Fig. 5. Detection ROC curves.

(a) With spatial potential. (b) Without spatial potential.

Fig. 6. The effect of spatial potential: without spatial shape knowl-

edge, people walking side by side are clustered together in (b), since

they exhibit coherent motion.

that have passed through the scene. We captured a PASSAGE

sequence with 1770 frames and tested on it (Fig.7).

6. CONCLUSION AND FUTURE WORK

This paper proposes a new objective function to guide the hi-

erarchical clustering of motion-independent features into dis-

tinct objects. This objective function provides a neat frame-

work for integrating different information (motion, spatial,

temporal), which are learned from short training sequences to

increase algorithm adaptivity to specific application scenes.

Detection performance are evaluated on several datasets of

typical multi-target visual tasks, including CAVIAR, which

is one of the most challenging public dataset for human de-

tection / tracking. The algorithm efficiency is also greatly

increased compared with previous similar work.

We have also observed the drawbacks of such motion-

based detection method, such as in the case of lack of track-

able features (e.g., silhouette-like targets), motion ambigu-

ity of features on boundaries of objects and non-rigid mo-

tion. Therefore, complementing motion-based methods with
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Fig. 7. Results of object detection and tracking on PASSAGE

dataset. The count of passed objects are shown on each edge of the

frame. Notice that when five people in #522 exit from the bottom in

#580, the count changed from 3 to 8.

appearance-based ones is a promising direction. Within our

framework, this could be achieved by adding appearance terms

in our objective function. Also, the features should be changed

into stronger descriptors.
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