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ABSTRACT

This paper proposes a method which utilizes invariant wavelet
features for correcting total occlusion in video surveillance
applications. The proposed method extracts invariant wavelet
features from the pre-occlusion spatial image of disappear-
ing objects. When new objects are detected during occlu-
sion, their extracted invariant wavelet features are compared
to those of lost objects to check for reappearance. When reap-
pearance occurs, the proposed method rebuilds the correct
correspondence map between pre-occlusion and post occlu-
sion objects to continue to track the ones that were lost during
total occlusion. Our results show that the proposed method is
more robust than referenced methods especially when objects
change or reverse their motion direction during occlusion.

Index Terms— Tracking, wavelet transforms, video sig-
nal processing.

1. INTRODUCTION

Video object tracking can be defined as the process of creating
unique correspondences between objects in a video sequence.
With such correspondences, high-level semantics such as events
and behaviors of objects can be extracted. The tracking pro-
cess is challenged by incidents of occlusion. Occlusion takes
place when one or more objects partially or totally mask re-
gions of others which is common in real video sequences.

Occlusion handling usually depends on the nature of the
tracking method used which can be classified as template-
based, layer-based, and feature-based. In template-based meth-
ods such as [1], the absence of the tracked template features
from the frame indicates occlusion. Total occlusion is cor-
rected when the template features reappear. The problem in
[1] is that it must learn in advance the features of all tracked
templates which is not suitable in surveillance. Layer-based
methods such as [2] define a pixel-wise layer visibility mea-
sure and use it to correct occlusion by separating the scene
into layers. The drawback in layer-based methods is the high
computational cost associated with computing and maintain-
ing the layer visibility information. Particle filters [3] have
recently become a popular method for visual tracking which
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copes with partial and short-lived occlusions. However, in
many applications, the prior information available for the en-
vironment is limited (e.g., tracker cannot be initialized with
features of objects of interest). Moreover, the complexity of
the tracking process increases with multiple objects and a sin-
gle camera. Feature-based methods such as [4, 5] extract sets
of features for the objects and build inter-frame correspon-
dences between them based on feature similarity. The prob-
lem with such methods is the unpredictable behavior of ob-
jects during total occlusion which may alter their features.

Occlusion can sometimes lead to total disappearance of
occluded objects from the scene. When objects reappear after
the end of occlusion, the problem becomes how to recover
their pre-occlusion correspondences or identifications in order
to continue to track them successfully. The complexity of the
problem increases when multiple objects are involved which
can exhibit during the occlusion changes in position, motion,
size and orientation. With only the spatial image of the object
from before the occlusion available, there is need for spatial
features which tolerate a certain degree of transformation.

In this paper, we enhance the method in [6] to extract ro-
bust invariant wavelet features and propose a method that uses
these features to solve the total occlusion problem. The key
contributions in this paper are; 1) successful recovery from to-
tal occlusion based only on the spatial texture of objects, and
2) robustness to significant motion changes. The remainder
of the paper is as follows. Sections 2 presents the proposed
approach. Simulation results are discussed in section 3 and
section 4 concludes the paper

2. PROPOSED METHOD

In this paper, the tracking method in [4] is used to perform
the object detection and tracking tasks. The terms image ob-
ject and video object are used extensively throughout this pa-
per. An image object identifies a closed contour in the current
frame. There is no temporal information associated with im-
age objects as they live only in the current frame Fk. On the
other hand, a video object refers to a temporally consistent ob-
ject with temporal information such as motion, trajectory, or
visibility. A video object is updated at the end of the tracking
process with the information of the matched image object.

Let Ii denotes the ith image object in the current frame
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Fk and Vj as the jth video object in the previous frame Fk−1.
The tracking algorithm in [4] builds correspondences Mij be-
tween Ii in Fk and Vj in Fk−1 based on similarities in po-
sition, shape, size, and motion. Feature similarities are af-
fected by occlusion. Fig 1 shows the different stages of a
total occlusion incident when one image object is nearly in-
visible from the scene because it is masked by another image
object. The tracker is challenged by the object reappearance
in Fig 1(c) because: 1) the new position of object 2 is closer
to the last known position of object 1, 2) The size features
such as width, height, and area are very similar between the
two objects; a situation which most likely continues to be true
if more objects are involved, 3) The motion features are unre-
liable because the objects can reverse or change direction or
speed during occlusion, and 4) The shape features are unreli-
able because the objects can shrink, expand or deform during
occlusion. In the proposed method, we use invariant wavelet
features because they rely on texture which changes less from
before and after occlusion than other spatial features.

Fig. 1. Effect of occlusion in confusing a video object tracker

Once occlusion is detected, the invariant wavelet features
are extracted based on [6] with proposed preprocessing steps
and improved feature selection. The features are kept as part
of the video object features. If a new image object is detected
within a predefined search radius of the visible occluding ob-
ject, the proposed method compares the features of the new
image object with the stored features for all occluded video
objects before declaring the image object as a new video ob-
ject. If the features of the new image object are similar within
a predefined threshold to the features of the occluded video
object with minimum feature difference among all occluded
video objects, the new image object is considered the reap-
pearance of that occluded video object.

2.1. Occlusion Correction

Fig. 2 shows a block diagram of the proposed occlusion cor-
rection method. The first step of the proposed method is to
detect all occluded objects between Fk−1 and Fk using the
occlusion detection method in [4] and store them in Vocc,
the set of occluded video objects. Next, for every Vj ∈ Vocc,
we create a new bounding box BBVj

using

BBwidth
Vj

= max(MBBwidth
Vj

, MBBheight
Vj

). (1)

BBheight
Vj

= max(MBBwidth
Vj

, MBBheight
Vj

). (2)
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Fig. 2. Block diagram of proposed method.

where MBBwidth
Vj

is the width of the minimum bounding box

of Vj , MBBheight
Vj

is its height, and MBBcenter
Vj

is its center.
We do this to get a square image of the object required by the
subsequent transformations.

The next step is to nullify the background texture effect
as it will be different from before and after the occlusion. To
do that, let Fk(x, y) denote the pixel at spatial position (x, y)
and frame k of size M ×N . We set to zero all pixels in BBVj

and not in Vj using contour filling (see Fig. 3), i.e.,

Fk−1(x, y) = 0, ∀(x, y) ∈ BBVj
− Vj , (4)

Note that we apply contour filling on the binary image of the

Fig. 3. Expansion of the MBB of the object and nullifying the
effect of the background texture.

object from background subtraction, then apply the result to
the colored image. After the proposed previous preprocess-
ing steps, we extract the invariant wavelet features of the sub-
image Fk−1(x, y) (x, y) ∈ BBVj

using [6] to obtain the fea-
ture vector FVj for Vj and store it as part of its information.
The reason we use invariant wavelet featuers is to tolerate a
degree of deformation in the object shape from one frame to
another. The process of extracting the invariant wavelet fea-
tures begins by transforming the object’s square gray-level
sub-image Fk−1(x, y), (x, y) ∈ BBVj

using the log-polar
transform to obtain an S ×R log-polar image lp(u, o). Then,
we apply the Discrete Wavelet Packet Transform (DWPT) to
lp(u, o) and its one-row circular shift down version to create
an oct-tree. Formally, let i denote the sub-band index (e.g.,
i ∈ {LL, LH, HL,LL}), j denote the decomposition level,
φ denote the scaling function, and ϕ denote the wavelet func-
tion, the DWPT is done by

W
i
φ(j, m, n) =

1√
MN

M−1X

m=1

N−1X

n=1

lp(u, o)φi
j,m,n(u, o), (5)

W
i
ϕ(j, m, n) =

1√
MN

M−1X

m=1

N−1X

n=1

lp(u, o)ϕi
j,m,n(u, o), (6)
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where W i
φ(j,m, n) denotes the approximation wavelet coef-

ficients at level j of sub-band i, and W i
ϕ(j,m, n) denotes the

details wavelet coefficients at level j of sub-band i. The oct-
tree is adaptively pruned based on a information cost (IC)
function in order to decrease the number of computations.
The tree is pruned as in [6]. We use the IC function

IC(W i
φ(j, m, n)) =

X

m,n

ln(W i
φ(j, m, n)2). (7)

Finally, we compute energy signatures for the sub-band in the
pruned tree and the L most dominant (largest) signatures are
used as a feature vector. We use the energy signature function

ES(W i
φ(j, m, n)) =

1

MN

X

m,n

|W i
φ(j, m, n)|. (8)

We propose to improve the feature vector selection pro-
cess by using only the energy signature of the approximation
coefficients at the first level j = 1 (e.g., ES(WLL

φ (1, m, n)))
as part of the feature vector. The approximation coefficients
at subsequent levels which come from approximation coef-
ficients in previous levels are ignored because their energy
signatures are similar and close to the signal mean.

As long as we have objects which are lost during occlu-
sion, we extract the invariant wavelet features of all image ob-
jects Ii in Ican, the set of image objects which are candidates
to be the reappearance of lost video objects. Ican is populated
with all image objects in Fk which do not have a correspon-
dence with any video object in Fk−1 and are within distance
d (e.g., d = 1

2
min(M,N) is adapted to the frame size and

is large enough to account for fast moving objects) from the
occluding object. Let FVi denote the feature vectors of the
candidate image objects. We first find the video object with
the minimum feature difference using

jmin = argmin
j

|FVi − FVj |, Vj ∈ Vocc, (9)

and then check if the difference is beyond a certain threshold
Th for similarity (i.e., |FVi − FVjmin

| < Th) (Th is ex-
perimentally chosen, e.g., Th = 1000). If so, we declare the
correspondence Mijmin

to indicate the recovery.

2.2. Feature invariance of the proposed method

We can model the transformation of the pixels inside the ob-
ject between frames using an affine model. Since objects are
segmented and are matched based on features, the translation
of objects is not important. We can then model the transfor-
mation of objects during occlusion as a combination of scal-
ing and rotation. Because of circular sampling in the log-polar
transform, the rotation effect is nullified within a row-shift.
However, the scale invariance of the method is not as strong
possibly due to the different visual content in scaled objects.

The log-polar transform expects a square image as input.
The image of extracted objects from a video sequence can
be non-square and their size not a power of two. We choose

to expand the bounding box and remove the background in-
stead of resizing the object’s subimage because the later re-
quires low-pass pre-filtering. The low-pass filtering smears
details which are vital to capture the texture of the image ob-
ject. Moreover, since this method is supposed to rely on vari-
ations or texture to identify objects, we proposed to not use
energy signatures calculated from approximation coefficients.
We refer here to the approximation sub-bands resulting from
decomposing approximation and not details sub-band. The
energy signature of such sub-bands are always part of the
dominant signatures (large valued coefficients) without con-
tributing to the inter-class differences. Moreover, when using
the ES in (8), the values of the energy signatures of these
sub-bands are very similar and close to the signal average.

3. RESULTS

To experimentally evaluate the proposed method, we use the
four video sequences in Fig. 4. The video sequence in Fig. 4(a)
shows five objects with different texture patterns and shapes
at different stages of total occlusion (before occlusion k = 14,
during occlusion k = 16, and at the end of occlusion k = 18).
The five objects occlude into one and exhibit during occlu-
sion, rotation, scaling, and significant change of motion di-
rection. Objects 1 and 4 reverse their motion directions and
return to their original location. Four of the objects are lost
during occlusion but are successfully recovered by the pro-
posed method whereas the referenced method [5] recovers
only object 3, declares objects 0 as new object 5, and con-
fuses objects 1 and 4. This is because the proposed method
relies on invariant texture features which allow for a degree of
transformation during occlusion and do not rely on motion.

Fig. 4(b) shows a manually changed survey sequence.
The original objects in frame k = 91 of the survey sequence
only partially occlude. We change the multiple partial occlu-
sion into a multiple total occlusion. The proposed method is
able to recover all lost objects during occlusion in k = 113,
whereas the referenced method recovers only the object with
the least amount of transformation.

Fig. 4(c) shows a natural total occlusion in the comm2
sequence. While the proposed method continues to assign the
correct identifications after the end of occlusion, the refer-
enced method [5] confuses the two object. Finally, Fig. 4(d)
shows a different total occlusion scenario in the commonly
referenced ekrlb sequence as an object is occluded with a
large obstacle (the column) and is lost from the scene in frame
k = 49. When, the object reappears from behind the obsta-
cle in frame k = 60, the proposed method is able to continue
to track it while the referenced method [5] declares the reap-
pearing object as a new object (object 1) and loses the original
object (object 0). Also, the occlusion was prolonged by one
minute and the same results were obtained. This is attributed
to the proposed method refraining from declaring new objects
with the presence of lost objects from the scene during occlu-
sion until their features are checked for reappearance.
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(a)

k=14 k=16 k=18 k=14 k=16 k=18

(b)

k=80 k=91 k=113 k=80 k=91 k=113

(c)

k=271 k=299 k=320 k=271 k=299 k=320

(d)

k=35 k=49 k=60 k=35 k=49 k=60
Proposed Method Method in [5]

Fig. 4. The tracking results for proposed and referenced method[5] after recovery from total occlusion at different scenarios.
Note that different trackers deal with small objects differently, hence the different labels between the proposed method and [5].

4. CONCLUSION

This paper proposed a method for correcting total occlusion
in video surveillance applications using invariant wavelet fea-
tures. The proposed method extracts texture-based invariant
wavelet features from the gray-level image of disappearing
objects during occlusion and uses them to check for reappear-
ance. The extracted invariant wavelet features are based on a
method which uses the energy signatures of the best basis rep-
resentation of the DWPT of the log-polar transformed object
images with proposed improved preprocessing and feature se-
lection. The invariance to rotation in the extracted features is
more robust than invariance to scaling. The correct correspon-
dence is re-established after occlusion to continue to track
lost objects. Our results show that the proposed method is
more robust than referenced methods especially when objects
change or reverse their motion direction during occlusion.
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