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Email: {chan su, amer}@ece.concordia.ca

ABSTRACT
A threshold quantization algorithm for robust change detec-
tion is proposed in this paper. According to the threshold dis-
tribution of difference frames, a 4-level Lloyd-Max quantizer
is designed, and then, based on the topological stabilization of
video frames, the Lloyd-Max quantizer is refined by a linear
adjusting function to form the proposed threshold quantizer.
Objective and subjective experiments show that the proposed
quantizer greatly improves the robustness of the threshold-
ing methods for change detection thus significantly improves
the quality of change masks without increasing computation
loads.

Index Terms— Image processing, quantization, image
segmentation

1. INTRODUCTION

Change detection (CD) techniques, which detect regions of
change (RCG) in frames of the same scene, are widely used in
video coding, remote sensing, and video surveillance. Frame
differencing followed by thresholding is popular CD due to its
simplicity [1]. However, gray-level distribution based thresh-
olding methods [2, 3] are sensitive to noise and illumina-
tion changes, and spatial-property based thresholding meth-
ods [4, 5, 6] are robust but not spatial stable and computa-
tionally expensive. In this paper, we aim at enhancing the
gray-level distribution based thresholding for CD while keep-
ing their computation load low by a novel topological stabi-
lization based threshold quantization algorithm.
Generally, objects in real-world videos have temporal co-

herence and the scene conditions do not change abruptly be-
tween scene changes. Therefore, the true threshold of differ-
ence frames should be temporally stable. Quantization is an
effective way to suppress the temporal variations of estimated
thresholds. However, few quantization methods are proposed
for CD. Wang [7] directly selects a threshold from a quan-
tized frame histogram and may fail when the histogram is uni-
modal. Kundu [8] performs frame thresholding by quantizing
each pixel of a frame using a 2 (or multiple)-level Lloyd-Max
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quantizer. But it may seriously underthreshold a difference
frame under challenging video conditions.
A threshold quantization algorithm for fast and robust CD

is proposed in this paper. Section 2 statistically models the
threshold distribution, and then describes the proposed thresh-
old quantizer in detail. Section 3 evaluates the proposed thresh-
old quantizer. Conclusions are presented in Section 4.

2. THE PROPOSED ALGORITHM

The proposed algorithm is based on threshold distribution anal-
ysis and the Lloyd-Max quantization algorithm [9], which
minimizes the mean square error (MSE) for a given number
of quantization levels. First, the true thresholds of difference
frames are approximated by a subjective evaluation procedure
(Sec. 2.1). Second, the statistical model of the threshold dis-
tribution is obtained based on the estimated true thresholds
(Sec. 2.2). A Lloyd-Max quantizer is then obtained based
on the threshold statistical model. At last, the Lloyd-Max
quantizer is refined by a linear heuristic adjusting function
(Sec. 2.3). The CD algorithm in [10] is used to get difference
frames {Dn}, where n is time instant.

2.1. True threshold approximation

To obtain a reliable threshold distribution of {Dn}, a vast
number of true thresholds are necessary to form the threshold
learning set {tL}. However, it is impractical to obtain the true
thresholds purely subjectively since it involves large tedious
works. In this paper, we approximate the true thresholds by
two steps: 1) obtain the thresholds as well as the binary re-
sults by a high-performance thresholding method, and 2) sub-
jectively evaluate the binary results and remove the thresholds
which lead to low-quality binary results.
Rosin et al. [4, 11] show that the Poisson-noise modeling

thresholding is one of the best thresholding methods for CD.
Therefore, we use the thresholding method to approximate
the true thresholds. Totally 27 real-world videos with differ-
ent contents and noise levels are used, and 9220 thresholds
are obtained. After subjectively evaluating the binary results,
1177 are removed from the learning set. Note that we as-
sume that the noise in {Dn} is additive white Gaussian noise
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(AWGN) in this paper.

2.2. Threshold distribution analysis and modeling

The RCG in {Dn} are caused by not only important changes
(e.g., objects movement) but also unimportant changes (e.g.,
noise or shadows). True thresholds of {Dn} should suppress
unimportant changes without damaging important changes.
Fig.1 shows an example of the threshold distribution based
on the learning set {tL}. Note that 0 ≤ tL ≤ 255. As can
be seen, the thresholds in {tL} can be divided into 4 classes,
i.e., the thresholds for very weak RCG (VWRCG), weak RCG
(WRCG), strong RCG (SRCG), and very strong RCG (VS-
RCG), by fixing three valleys v1, v2 and v3 in the threshold
distribution curve. Assume that event E1, E2, E3 and E4 are
“a difference frame contains VWRCG, WRCG, SRCG, and
VSRCG”, respectively, where events E1, E2, E3, and E4 are
mutually exclusive. We model the distribution of {tL} as a
random variable T . Based on the theorem on total probabil-
ity, the probability density function (pdf) p(t) of T is

p(t) =
4∑

i=1

p(t|Ei)P [Ei], (1)

where i = 1, 2, 3 and 4, P [Ei] is the probability of event Ei.

Fig. 1. True-threshold distribution ofDn.

We model each conditional pdf p(t|Ei) as a Gaussian dis-
tribution with meanmi and variance σ2

i
. Thus,

p(t) =

4∑

i=1

N(mi, σ
2

i
) · P [Ei], (2)

where

N(mi, σ
2

i
) =

1√
2πσi

e
−

(t−mi)
2

2σ
2
i . (3)

By using the maximum likelihood estimation, the mean
and variance of a Gaussian random variable can be estimated
by the population mean and population variance. Therefore,
the parametersmi and σ2

i
in (3) can be estimated by comput-

ing the mean and variance of the thresholds belong to Ei in
the learning set {tL}. Fig.2 shows an example of the statis-
tical model of the true threshold distribution shown in Fig.1.
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Fig. 2. Modeling the true-threshold distribution forDn.

2.3. Threshold Quantization

The pivotal step of designing a quantizer is to find the par-
tition levels {ak} and the corresponding reproduction lev-
els {rk}, where k = {1, 2, · · · ,M}, and M is the num-
ber of quantization levels. We design the proposed threshold
quantizer with four reproduction levels corresponding to the
thresholds for the classes VWRCG, WRCG, SRCG, and VS-
RCG. Based on Lloyd-Max algorithm [9] and the pdf of T

given in (2), we can obtain the four reproduction levels {r1,
r2, r3, r4} and three partition levels {a1, a2, a3} of the Lloyd-
Max threshold quantizer.
Since a Lloyd-Max quantizer quantizes any data in (ak−1,

ak] to be rk, the threshold quantizer may not work well for the
thresholding methods which tend to underthresholding a Dn,
because it is possible that a threshold is quantized to be much
more lower. This may be more serious when thresholding
noisy videos or videos with serious local changes (e.g., local
changes due to door opening).
It has been shown in [5, 6] that video frames have topolog-

ical stabilization, i.e., the number of RCG in Dn is relatively
stable over a range of thresholds. Rosin et. al. [5] show that
counting the number of RCG can be replaced by computing
the Euler number in practice. As the threshold increasing,
the Euler number of Dn tends to be stable over a range of
thresholds (Fig.3). Thus the change masks of aDn generated
by different thresholds remain stable over the threshold range
[5]. Based on this observation, we can refine the Lloyd-Max
quantizer by increasing rk to increase its robustness to noise
and local changes. For the thresholds which underthreshold
Dn, the refined quantizer can significantly improve the qual-
ity of change masks. For the thresholds which does not under-
thresholdDn, the refined quantizer will not seriously degrade
change masks due to the stabilization of change masks in rel-
atively large threshold ranges.
In this paper, we refine the Lloyd-Max threshold quantizer

with a linear heuristic adjusting function.

rt

k
= rk + αk · σk

at

k
= ak,

(4)

where, rt

k
and at

k
are the reproduction level and partition level
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Fig. 3. Thresholds vs. Euler number.

of the proposed threshold quantizer, respectively, and αk is a
constant factor for σk, the standard deviation of the thresh-
olds belonging to k-th class. To avoid overthresholding, it is
not necessary that αk always makes rt

k
be in the stable Euler

number region thus αk need not be adaptively set.

3. EVALUATION AND COMPARISON

Based on the learning set {tL}, we model p(t|E1), p(t|E2),
p(t|E3) and p(t|E4) as N(10.01, 3.392), N(22.01, 3.432),
N(37.82, 4.652) andN(57.67, 4.492), respectively. Based on
the observation of the contents of learning video set, the prior
probabilities P [E1], P [E2], P [E3], and P [E4] are selected
between 0.1− 0.2, 0.25− 0.4, 0.25− 0.4, and 0.05− 0.1, re-
spectively. In this paper, we set P [E1] = 0.16, P [E2] = 0.40,
P [E3] = 0.35, and P [E4] = 0.09. Thus the pdf of T given in
(2) is determined. The partition levels {ak} and the reproduc-
tion levels {rk} of the Lloyd-Max quantizer are then com-
puted as {a1, a2, a3} = {26, 37, 50} and {r1, r2, r3, r4} =
{19, 32, 41, 59}, respectively. By observing the output of the
learning set, adjust factor α1, α2, α3 can be selected between
1.0− 1.5, and α4 is between 0.3− 0.5 for avoiding seriously
overthresholding. We set {α1, α2, α3, α4} = {1.18, 1.18,
1.08, 0.45} in (4), thus the proposed threshold quantizer is

{rt
1
, rt

2
, rt

3
, rt

4
} = {23, 36, 46, 61}

{at
1
, at

2
, at

3
} = {26, 37, 50}. (5)

The evaluation is performed by applying the proposed
threshold quantizer to the output of the gray-level distribution
based Kapur thresholding algorithm [2], which is found to
be suitable for CD but perform worst among the thresholding
methods for CD recommended in [11]. Difference frames are
obtained by the CD in [10].
The videos we used for testing the proposed quantizer are

disjoint from the learning video set. They are: “Hall” (300
frames of size 352 × 288, well illuminated, low-noise, and
some local light changes), “Intelligent room” (300 frames
of size 320 × 240, well illuminated but serious local light
changes), and “Survey” (1000 frames of size 320 × 240, rel-
atively high noise and serious local changes caused by light-
source and shadows).
Fig.4 shows sample comparison results of “Hall”, “Intelli-

gent room”, and “Survey”. As can be seen, the Kapur method

with the proposed threshold quantizer significantly outper-
forms the original Kapur method.

(a) (b) (c)

Fig. 4. Comparison between the Kapur thresholding without
and with the proposed quantizer. (a) original frames of “Hall”
(F48), “Intel. room” (F215), and “Survey” (F48); (b) object
masks of (a) obtained by Kapur method; (c) masks of (a) by
Kapur method with the proposed quantizer.

To test the noise robustness of the proposed quantizer, 25
dB PSNR noisy “Survey” is used. Fig.5 shows that the pro-
posed quantizer clearly improves the noise robustness of the
Kapur method thus improves the quality of change masks.

(a) (b) (c)
Fig. 5. Comparison on noisy “Survey” 25 dB. (a) F198; (b)
masks by Kapur method; (c) masks by Kapur method with the
proposed quantizer.

In addition, the objective measures Jaccard similarity co-
efficient (JC) and Yule coefficient (YC) using ground truth are
used [4]. The higher a measure is, the better the thresholding
is. As can be seen in Fig.6, the proposed quantizer signifi-
cantly improves the performance of the Kapur method.
To objectively evaluate the noise robustness of the pro-

posed threshold quantizer, the YC and JC measures are ap-
plied to the noisy 25 dB “Hall”. As shown in Fig.7, the Kapur
method with the proposed threshold quantizer clearly outper-
forms the original Kapur method.
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(a) YC measure.
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(b) JC measure.
Fig. 6. Object measures comparison on “Hall” (top) and “In-
tel. room” (bottom).
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(a) YC measure.
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(b) JC measure.
Fig. 7. Objective measures on “Hall” with PSNR = 25 dB.

To test the efficiency of the proposed quantizer, we inte-
grated it into a CDmethod [10] that includes a frame-differencing
step and a thresholding step and applied it to quantize the
thresholds obtained by the thresholding step. The two-step
CD method used requires on average 1.95× 10−2 second per
352 × 288 frame. The proposed 4-level threshold quantizer
requires 3.34 × 10−5 second per 352 × 288 frame. Thus the
proposed quantizer adds very tiny computational time (0.17%
of the time required for the CD used). Note that the frame rate
of the proposed quantizer is constant and does not depend on
the frame size or content. This is because the proposed quan-
tizer only processes the thresholds obtained by the threshold-
ing step and not the content of a video frame.

4. CONCLUSION

The threshold distribution of difference frames is modeled
as a mixed Gaussian distributions of the threshold distribu-
tions for very weak, weak, strong, and very strong regions
of change. A Lloyd-Max quantizer is then designed based

on this statistical model. The proposed threshold quantizer
is obtained by refining the Lloyd-Max quantizer with a linear
adjusting function based on the topological stabilization of
video frames. Both subjective and objective evaluations show
that the proposed quantization algorithm clearly improves the
performance of the gray-level distribution based thresholding
methods without increasing computation loads.
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