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ABSTRACT 
 
We propose a new method addressing the problem of 
template drift, a common phenomenon in which the target 
gradually shifts away from the template in object tracking. 
Much effort has been devoted to this problem, but the results 
are not satisfactory enough due to the lack of quantitative 
analysis of its cause. In this paper, after carefully examining 
where template drift stems from and how it influences 
template update, we derive expressions that accurately 
evaluate the model noises of the Kalman appearance filter 
employed to update the template. The appearance filter 
therefore achieves an optimal balance between reducing 
template drift and keeping track of target appearance 
variations. We perform experiments on a wide range of real-
world video sequences containing diverse degrees of target 
appearance variations. All the experimental results confirm 
the effectiveness of our algorithm. 

Index Terms— Object tracking, template drift, template 
matching, adaptive Kalman filtering, noise evaluation. 
 

1. INTRODUCTION 

Object tracking has a wide range of applications in robotic 
control, visual surveillance, video retrieval, and homing 
technologies. Much research has been devoted to this field, 
and the algorithms based on template matching draw much 
attention [1]-[6]. In such algorithms, target is modeled by a 
template, and is tracked in a video sequence by matching 
candidate image regions with the template through 
coordinate transformations. The set of the transformation 
parameters that yields the best match with the template 
represents the geometric information of the target.  

In order to take into account the changing target 
appearance, the template ought to be updated in one way or 
another. The most straightforward method which replaces 
the template every frame (or every n frames) with the image 
region believed to be the target [7], [8] is found to suffer 
from gradual drift of the target out of the template, 
eventually resulting in the loss of the target. This 
phenomenon is referred to as template drift [1], [9]. 

The cause of template drift has been preliminarily and 

qualitatively investigated in the literature [1]-[3], where 
template drift is ascribed to the accumulation of small errors 
introduced in the location of the template each time the 
template is updated. Faster updating of the template results 
in severer template drift, and a tricky situation is thus 
formed: frequent template renewal is required to keep the 
template up-to-date with the changing target appearance; on 
the other hand, hasty update of the template will damage the 
integrity of the template in face of drift errors. In order to 
obtain a good trade-off for the situation, template-updating 
strategies should be carefully designed. 

Some methods utilize the first template extracted from 
the first frame as a benchmark for appropriate realignment 
and update of the current template [1], [2], [9]. These 
approaches eradicate template drift when tracking objects 
over a short period of time during which the appearance of 
the target remains almost the same. However, their resort to 
the first template is unreliable when the target appearance 
undergoes major changes. 

After comparing various template update strategies 
without resorting to the first template, a conclusion is 
reached in [3] that Kalman filtering of the template shows 
the strongest robustness against drift and noise. The choice 
of Kalman gain for template filtering is further investigated 
in [6]. However, as the Kalman gain keeps fixed throughout 
the sequence, the Kalman template filter mentioned in [3] 
and [6] is unable to adjust its updating rate according to the 
degree of the target appearance variations and the extent of 
possible template drift. 

Further improvements are made in [4] and [5] by 
allowing the Kalman gain to fluctuate according to how 
intensively the target appearance changes. This is achieved 
by estimating one of the two model noises in the Kalman 
filter online. Nevertheless, Reference [4] and [5] either 
assume the state transition noise or the measurement noise 
to be constant, which are not well justified. As a 
consequence, their performance of reducing template drift is 
still not satisfactory enough. 

In order to properly estimate the model noises, the 
contribution that template drift makes towards the 
measurement noise should be quantitatively obtained. After a 
careful analysis of the cause of template drift, we identify a 
large component of the measurement noise as “drift noise” 
introduced by the precision limit of searching for the optimal 
coordinate transformation parameters. The drift noise is then 
acquired quantitatively by calculating the probability This work is supported by National Basic Research Program 973 under 
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distributions of the true values of the template pixels. 
Combining the estimation of camera noise, we therefore arrive 
at an expression to evaluate the measurement noise online, 
which is crucial in obtaining an optimal Kalman gain in the 
sense of optimally balancing between keeping in pace with the 
target appearance variations and preventing template drift.  

The remainder of this paper is organized as follows. 
Section 2 gives a brief review of the use of template 
matching and Kalman appearance filtering in tracking 
objects. In Section 3, we elaborate on the quantitative 
analysis of the measurement noise and the role it plays in 
preventing template drift. Experimental results are shown in 
Section 4. Section 5 concludes this paper. 

2. KALMAN APPEARANCE FILTERING IN 
TEMPLATE-MATCHING BASED TRACKING 

The object (or target) to be tracked is characterized by an 
image called template that is generally initialized by extracting 
from the first frame of a video sequence. In subsequent frames, 
the estimated template  is mapped to the frame coordinate 
system by the coordinate transformation (x;a), where a is the 
transformation parameter vector. The location of the target in a 
certain frame n is determined by performing 
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where  is the estimated transformation parameter vector, In(x)
is the grayscale of the pixels in frame n, T represents the 
ensemble of the template pixels in the template coordinate 
system, and N is the number of pixels in the template. As 
might not necessarily generate integer coordinates, bilinear 
interpolation is employed here to calculate In[ (x;a)].

Ideally, the  found by (1) reflects the true geometric 
status of the target. However, as actual implementation of (1) 
is always conducted in a discrete vector space, the 
coordinate transformation parameter vector acquired by (1) 
is always somewhat different from its true value due to non-
infinitesimal searching steps. As a consequence, small 
deviation of the measured target In[ (x; )] from the true
target In[ (x; a0)] constantly occurs in each frame, which, 
along with the camera noise, forms the measurement noise. 
We refer to the former component as drift noise.
Accumulation of the drift noise is the ultimate cause of 
template drift.  

In order to ensure an optimal estimation of the true 
target appearance in face of the measurement noise, Kalman 
filtering is employed to update the template, where the state 
equation and the measurement equation for a template pixel 
are 
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Here, T(x,n) denotes the grayscale of a template pixel x at 
frame n. S (x ,n 1)  is the state transition noise which 
actually reflects the variation of the appearance of the target 

itself from frame n 1 to frame n . It is reasonable to assume 
that S (x ,n )  is a zero-mean white noise with the power 
spectrum S

2 (x ,n ) . M(x ,n )  represents the measurement 
noise which is also white and zero-mean. The power of 

M (x ,n )  is M
2 (x ,n ) , which consists of the power of the 

drift noise and the camera noise.  
According to the theory of Kalman filtering [10], 

equations (4) to (7) form a complete iteration to update the 
estimated value of the template pixel: 
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Here, P
2 and E

2 are the powers of the prediction error and 
the estimation error, respectively. They are automatically 
calculated in the iterations of the Kalman filtering. What 
should be estimated is the power of the two model noises, S

2

and M
2, which are related by the following equation [4]: 

),()1,()1,(),( 2222 nnnn MSEV xxxx , (8) 
where V

2 is the power of the innovation which can be 
approximated as the spatio-temporal mean squared differences:  
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where L is the length of the temporal moving-average 
window, L(x) is a spatial neighborhood centered at x, and NL
is the number of pixels involved in the averaging process. 

According to (8), if one of the model noise powers is 
obtained, the other one can be trivially calculated. Both [4] 
and [5] assume one of the model noise powers to be 
constant. This assumption, however, is appropriate only in 
very specific tracking cases.  

3. EVALUATING MEASUREMENT NOISE POWER 

As has been discussed in the previous section, the 
discrepancy between  and a0 leads to the inaccuracy of the 
transformed coordinate (x; ) and hence the drift error in 
In[ (x; )]. As is shown in Fig. 1, the true position of a 
template pixel x might reside in a region u which is 
centered at (x; ) in the current frame In, and the true value 
of the pixel x is therefore equal to the value of a certain 
point within u, which is probably not (x; ). Increasing 
precision of (1) results in smaller size of u and thus less 
drift noise. 

For the simplicity of notation, we use a instead of a0 to 
denote the true values of the transformation parameters. The 
drift noise power of a template pixel located at x can be 
formulated as  

a
aaaaxaxx dpIIn annD )ˆ|()]ˆ;([)];([),( 22 , (10) 

where D
2(x,n) is the drift noise power of pixel x at frame n,

and pa is the joint posterior distribution of the components 
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of a conditioned on the value of . The posterior 
distributions of the components of a are independent of one 
another when  is in the close vicinity of a, and (10) is 

therefore written as  
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Here, pi is the posterior distribution of ai, the i-th component 
of a, and m is the number of transformation parameters that 
 contains. 

Now we focus on the calculation of pi. As i can only 
take discrete values, the conditional probability of i is  
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where Pi is the conditional probability of i after ai is given, 
and i is the final step size with which (1) searches for i.
From the Bayesian theory, the posterior distribution of ai

can be expressed as  
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Substituting (12) into (13) yields 
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Although it is difficult to acquire the exact value of 
p(ai), we can reasonably assume that p(ai) is approximately 
constant within the integral interval, since p(ai) is relatively 
flat near its maximum and i is relatively small. Equation 
(14) is therefore reduced to 
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While it is a challenging task to arrive at an analytical 
expression of D

2 (x ,n )  from (11) and (15),  we can still 
obtain a numerical result by replacing the integral with 
summation. Let a1 am forms an elementary hypercube in 
the hyperspace of a as a unit for summation, and define ak 
as [k1 a1 km am]T, we have 
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Here, the range of the integer ki in the summation satisfies 
2ˆ iiii aak , mi ,,2,1 . (17) 

The other component of the measurement noise power 
is the camera noise power C

2 , which is assumed to be 
constant and can be acquired in advance. The final estimate 
of the measurement noise power for the template pixel x is 
therefore obtained as follows: 

222 ),(),( CDM nn xx . (18) 
From the discussion above, it can be seen that the 

measurement noise power is heavily dependent on the target 
appearance: higher density of textures or edges contained in 
target appearance results in larger measurement noise power. 
This is not surprising, because the same amount of deviation 
of the target location will cause greater appearance errors and 
(hence) severer template damage to the template pixels 
surrounded by complex target appearance than simple target 
appearance. As a result, template drift is more prone to occur 
when the target appearance contains more details. In our 
algorithm, more appearance details lead to higher 
measurement noise power which precludes the Kalman gain 
of the appearance filter from getting too large, and 
consequently template drift can be significantly reduced. 

4. EXPERIMENTAL RESULTS 

We perform experiments on a wide range of real-world video 
sequences in which the targets undergo various degrees of 
changes in their appearances. As the experiments on all the 
sequences have similar results, we only present three of them 
in this paper, which are demonstrated in Fig. 2. Each row 
shows the result of one sequence, and the degrees of the target 
appearance variations increase from the first row to the third 
row. We compare the performances of different algorithms: 
the algorithm in [1], the algorithm in [5], and our proposed 
algorithm. In each row, the leftmost image displays the 
common initialization for all the algorithms; the subsequent 
three images from left to right are the final tracking results of 
the algorithm in [1], the algorithm in [5], and our algorithm, 
respectively. The current template is overlapped in the lower-
right corner of each image. 

It is observed in the experiments that when the target 
appearance varies little, the algorithm in [5] suffer from 
severe template drift as a result of unnecessarily high 
Kalman gain (see Fig. 2-a3). When the variation of the 
target appearance becomes more intensive, the performance 
of the algorithm in [1] deteriorates a lot due to the invalidity 
of the first template to serve as a benchmark (see Fig. 2-b2
and -c2). In this case, the algorithm in [5] still incurs some 
template drift (see Fig. 2-b3 and -c3), because the Kalman 
gain calculated by [5] is sub-optimal. 

Fig. 1. Template drift occurs when the true mapped position 
(x; a0) lies in a region around the searching result (x; ).
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Our proposed algorithm achieves the highest tracking 
accuracy throughout the experiments. We observe that even 
when there is little change in the target appearance, the 
innovation is much larger when the target is smaller in scale 
and thus compact with features. Evidently, such large 
innovation results from matching inaccuracy, not the 
variation of the target appearance. Our algorithm takes this 
into account by raising the measurement noise power and 
keeping the Kalman gain low. As a result, almost no 
template drift occurs when the target appearance remains 
fixed (see Fig. 2-a4). On the other hand, when the target has 
a changing appearance, our algorithm effectively reduces 
template drift by updating the template just in time and just 
in place to keep up with the target appearance variations 
while refraining from over-updating the template (see Fig. 
2-b4 and -c4). To sum up, our algorithm is robust against 
template drift under any circumstance. 

5. CONCLUSION 

In this paper, we propose an algorithm that is robust against 
template drift when tracking objects. This purpose is achieved 
by correctly calculating the measurement noise power online, 
in which the key is to evaluate the drift noise power after 
obtaining the distribution of the true values of template pixels. 
Experiments conducted on various types of real-world video 
sequences have demonstrated that our algorithm achieves the 
best performance of reducing template drift in all cases. 
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Fig. 2. Comparison of the robustness against template drift for various algorithms. The first column is the common initialization for all the 
algorithms. The subsequent columns from left to right are the results for the algorithm in [1], the algorithm in [5], and our algorithm, respectively.
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