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ABSTRACT 

This paper describes the use of variable kernels based on the 
normalized Chamfer distance transform (NCDT) for mean shift, 
object tracking in colour video sequences. This replaces the 
more usual Epanechnikov kernel, improving target 
representation and localization without increasing the 
processing time, minimising the distance between successive 
frame RGB distributions using the Bhattacharya coefficient. 
The target shape which defines the NCDT is found either by 
regional segmentation or background-difference imaging, 
dependent on the nature of the video sequence. The improved 
performance is demonstrated on a number of colour video 
sequences. 

Index Terms— Object tracking, mean shift, Chamfer distance 
transform, image segmentation, Bhattacharyya coefficient

1. INTRODUCTION 

Real-time feature or object tracking in video sequences is an 
important application in computer vision, often demanding 
real-time operation. In general, joint spatial and temporal 
analysis can be used to extract and track regions of interest in 
the dynamic scene. Some recent exemplars include face 
tracking in a crowded environment [1], aerial video 
surveillance [2], human body tracking and behavioural analysis 
[3, 4]. In the latter example, in particular, only a small fraction 
of the computational resource can be allocated to tracking, as 
the rest may be required for high-level tasks such as recognition 
and understanding of that behaviour. Therefore, it is desirable 
to ensure that the tracker is as efficient as possible. 

The mean shift algorithm [5, 6] is a nonparametric 
statistical method to find the nearest mode of a point sample 
distribution, that has been adopted as an efficient technique for 
image segmentation [7] and object tracking [8].  In this paper, 
we show how such a kernel-based object tracking algorithm 
can be improved by using a kernel based on the Chamfer 
distance [9]. We present experiments that demonstrate the 
superior performance of this approach in comparison with the 
basic algorithm by measuring accuracy, robustness and stability. 

2. KERNEL DENSITY ESTIMATION 

To summarise current practice, a kernel of appropriate 
bandwidth applied to a continuous pdf provides a smooth, 

continuous distribution that retains the original modes. Such 
kernels should be piecewise continuous, bounded, symmetric 
around zero, and monotonically decreasing from the centre [10].  
We can apply such kernels to samples taken from image pixels, 
i.e. the kernel is defined in image, not colour space. When 
tracking an object through a video sequence, we represent it by 
a discrete distribution of samples from a region in colour space, 
localised by a kernel whose centre defines the current position. 
Then, we find the maximum in the distribution of a function, ρ , 
that measures the similarity between the weighted colour 
distributions as a function of position (shift) in the candidate
image with respect to a previous model image. Defining the 
two sets of parameters for the respective densities as )(xp

and )(xq , the Bhattacharyya coefficient [11] is an approximate 
measurement of the amount of overlap, 

= dxxqxp )()(ρ                        (1) 

As we are dealing with discretely sampled data from 
colour images, we use discrete densities stored as m-bin 
histograms q, p(y) in both the model and candidate image, 
respectively. According to the definition of Eq. (1), the sample 
estimate of the Bhattacharyya coefficient is given by  
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In discrete space, {xi}, i=1,2,…n are the pixel locations of 
the model, centred at a spatial location 0, the position of the 
window that we want to track in the preceding frame. A 
function b: { }m,,2,12 →R  associates to the pixel at location xi

the index b(xi) of the histogram bin corresponding to the colour 
of that pixel. If K is the normalized kernel function, then the 
kernel density of the features mu ,,1= in the target model 
estimate is given by 
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where δ  is the Kronecker delta function. If all possible colours 
in RGB space in a 24-bit image are quantised, there are 2563

bins. As the target window is likely to be thousands of pixels at 
most, such a histogram would be sparsely populated. Very fine 
quantization of the colour space is probably unjustified for 
images in which the illumination may be variable, and there is 
additional noise on the colour video. Finally, there are several 
summing operations performed over the model to normalize it, 
which are very costly. Therefore, we use a much coarser 
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quantization of the colour space, 16 bins for each colour of 
RGB, giving a total of m=163 =4096 bins.  

Estimating the colour density in this way, the mean shift 
algorithm can be used to iteratively shift the location y in the 
target frame, to find a mode in the distribution of the 
Bhattacharya coefficient (Eq.2). Using Taylor expansion 
around the values, ( )0yup , the Bhattacharyya coefficient is 
approximated by [8]: 
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In the mean shift algorithm, the kernel is recursively 
moved from the current location 

0y  to a new location 1y
according to the relation. 
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where G is the gradient function computed on K. This is 
equivalent to a steepest ascent over the gradient of the kernel-
filtered similarity function based on the colour histograms. 

3. USING A KERNEL BASED ON THE CHAMFER 
DISTANCE TRANSFORM 

The equivalence of the mean shift procedure to gradient ascent 
on the similarity function holds for kernels that are radially 
symmetric, non-negative, non-increasing and piecewise 
continuous over the profile [6]. A radially symmetric kernel can 
be described by a 1D profile rather than a 2D (or higher order) 
image. The usual choice for K is the optimal Epanechnikov 
kernel (E-kernel) [10] that has a uniform derivative of G=1
which is also computationally simple. However, in tracking an 
object through a video sequence and applying the mean shift 
algorithm to move the position of the target window, the 
bounds of the domain R2 are altered on each successive 
application of the algorithm. In most instances, for example in 
tracking the human subjects shown here, the target does not 
have radial symmetry, so the use of a E-kernel includes 
foreground as background, or background as foreground pixels, 
or both. Depending on the shifting of pixels between 
background and foreground, and on the similarity of the two 
colour distributions (in a worst case the background has similar 
properties to the target), then multiple modes are formed in the 
pdf and the mean shift is no longer exact.  

Therefore, our contribution is to use a distance transform
(DT), matched to the shape of the tracked object, as a kernel 
function. Although this kernel does not change shape through 
the sequence, it can change size, scaling as the subject expands 
or contracts in the camera field of view. For the DT each 
foreground pixel is given a value that is a measure of the 
distance to the nearest edge pixel. The edge and background 
pixels are set to zero. We use the normalised Chamfer distance 
transform (NCDT) rather than the true Euclidean distance, as it 
is an efficient approximation, as shown in Fig.1. The NCDT 
kernel better represents the colour distribution of the tracked 

target, yet retains the more reliable centre weighting of the 
radially symmetric kernels. 

    
(a) Binary image      (b) NCDT  

Fig. 1. Chamfer distances transform. 

This transform is applied to the target, separated from the 
background by mean shift segmentation [7] or background 
differencing [12]. This weighting can increase the accuracy and 
robustness of representation of the pdf’s as the target moves, 
excluding the peripheral pixels that occur within a radially 
symmetric window. Applying the NCDT transform to the 
region of interest, and weighting the colour distributions 
accordingly, we determine whether the exclusion of the 
erroneous background pixels, for example, from the density 
estimate of the target,  and giving increased weighting to those 
more reliable pixels towards the centre, will outweigh the 
possibility of forming false modes. Of course, although the 
NCDT may produce false modes, this also occurs with radially 
symmetric kernels due to badly defined densities. 

As the scale of the target may change, the size of the 
kernel is adapted accordingly. Denote by sprev the size in the 
previous frame. We measure the size scur in the current frame 
by running the target localization algorithm three times, with 
size s=sprev, sss prev Δ+= , and sss prev Δ−= . 

prevss 15.0=Δ . The 

best result, scur, yielding the largest Bhattacharyya coefficient is 
retained. In applying the NCDT kernel to the mean shift 
procedure, we have a number of options. First we can define 
the NCDT on the basis of the first frame, and use this for the 
whole sequence. Second we can update the kernel on each 
frame, before mean shifting in the subsequent frame but 
retaining the previous frame’s kernel. Third, we can segment 
the subsequent frame and apply a different kernel weighting. 
This depends primarily on whether the object shape changes in 
the long or short term. The algorithm described above applies 
to the first option, which is used for the experimental results in 
the next section. To modify or update for each model frame, for 
example, the segmentation and NCDT computation code is 
included inside the outer repeat-until loop. Otherwise, the 
iterative algorithm that we use to test and compare the 
respective kernels is the same as that defined in reference [8]: 

Define target centroid, y0, in first frame 
Apply segmentation (e.g. using homogeneity criteria, 

background subtraction) to separate foreground (target) 
and background 

Compute (scaled) NCDT-kernel using Chamfer distance
Form model histogram, q, in colour space 
Repeat 

Fetch next frame 
Repeat 
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Compute candidate histogram p(y0) in colour 
space using NCDT-kernel 

Find next location 1y of candidate using Eq. (5) 
Compute error, 01 yy −=e

Set 10 yy =
Until ε≤e , an error threshold or maximum  

iteration reached 
0y is the new location 

Until (end of input sequence) 

Adaptive kernels have also been used by Porikli and Tuzel 
[13]. Like our approach, their algorithm does not maintain fully 
the mean-shift convergence conditions [7]. However, the 
NCDT presented here satisfies it partly with its decreasing 
profile. Practical tests show that even if theoretical convergence 
conditions are not fully satisfied, convergence is achieved.

4. EXPERIMENTAL EVALUATION 

In this section, we present the evaluation of the modified mean 
shift object tracking using the NCDT-kernel in comparison 
with the radially symmetric E-kernel. We track moving objects, 
a static object with a moving camera and a combination of the 
two. We show examples of variation of scale and the addition 
of Gaussian noise. All the tests were carried out on a Pentium 4 
CPU 3.40 GHz with 1GB RAM. The code was implemented in 
Matlab, so that it would be reasonable to assume a considerable 
increase in processing speed if re-implemented in another 
language. Even so, real-time operation is possible.  

In the first experiment, we compare the tracking of a 
moving male pedestrian in a video sequence of a shopping 
centre that includes 75 frames of 240320 ×  pixels, comparing 
the normal E-kernel with the NCDT kernel. The target location 
was initialized by a rectangular region (shown) of size 

3177 × pixels. Fig.2 shows the first frame and the foreground 
image of the tracked object. In this case a simple regional 
homogeneity criterion has been applied as the target had 
relatively uniform intensity. Fig.3 shows the minimum value of 
a distance function, ))(1(2 yρ−=d , computed for each frame 
from the Bhattacharyya coefficient (Eq. 2). By definition, the 
distance of the first frame is 0, meaning a perfect match. The 
peak in the E-kernel data is 0.643 which corresponds to the 
wrong candidate frame 53. After this frame the distance 
reduces but the algorithm was tracking another object which 
has nearly the same colour as the target. Fig.4(a) and (b) show 
some examples, frames 1, 15, 30 and 60, from the whole 
sequence. In frame 30 some of the original pedestrian is still 
contained within the window, but after the 52nd frame, the 
pedestrian is lost completely in Fig.4(b), as the tracker finally 
latches on to another crossing pedestrian. This demonstrates 
that the inclusion of the background of the tracked pedestrian 
(in this case another pedestrian) includes pixels that are similar 
in colour space, so that the algorithm fails to identify the 
correct distribution in succeeding frames and hence follows the 
wrong target. Fig.5 shows the manifestation of the problem in 

the -space, using Eq. 2 – effectively the E-kernel filtered 
density estimate has additional, confusing modes caused by the 
inclusion of the crossing pedestrian in the background. 
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Fig. 4. Tracking the crossing pedestrian 
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Fig. 5. The similarity surfaces (values of the Bhattacharyya 
coefficient) for frame 52. The initial points, ( ∇ ), and 
convergence points, (lines), are shown. (a) The result from the 
E-kernel. (b) The  result from the NCDT-kernel. 

In terms of complexity, computed from 200 executions of 
the program, the average frames per second of the NCDT-
kernel and the E-kernel are 36.95 and 37.06 respectively. The 
maximum numbers of iterations within a single frame are 16 
and 21, respectively. The average times per frame are roughly 
comparable because although the speed of convergence is 
quicker with the NCDT-kernel, additional processing is 
required to segment the target window, in order to get more 
robust and accurate tracking. 

To further test the robustness of the NCDT-kernel 
algorithm and convergence properties, we added combined 
random Gaussian and uniformly distributed noise of mean zero 
with 0.5 and 0.05 variance respectively to the frame shown in 
Fig.6(a), the intensities ranging from 0 to 1. Fig.6(b) shows the 
one result from 1000 trials superimposed on the noisy image. 
For this level of noise, the algorithm is successful on all 
occasions, beyond this level the success rate diminishes but this 
data is not presented. The black rectangle is the initial position, 
the red one is the optimal solution. The initial position is far 
from the target ( 50,20 =Δ=Δ yx  pixels). From Table 1, which 

Fig. 2. Rectangular window and 
segmentation 

Fig. 3. The Bhattacharya distance 
values, for the male pedestrian 

(a) (b) 
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shows quantitative results, the NCDT kernel algorithm needs 
on average only 4.4 iterations to converge to the optimal result, 
but the E-kernel needs 21 iterations on average. Again, the 
greater complexity of computing the NCDT kernel is balanced 
by the greatly reduced number of iterations, so the processing 
speed per frame is comparable. 

   
Fig. 6. (a) Original image and segmentation result. (b) Noised 

image and the initial rectangle. 

Table 1. Comparison results of NDCT and E-kernel method 
CPU time (sec./frame) Method Average

iterations max min mean 
E-kernel 21 0.3205 0.2604 0.2801 
NCDT 4.4 0.0300 0.2504 0.1815 

In the third example, shown in Fig.7, the substantial 
difference from Fig.4 is that the intensity and colour balance of 
the woman is very similar to the background. Colour 
segmentation fails in this situation. However, we can still 
extract the foreground using background subtraction; we model 
each pixel as a mixture of Gaussians and use an online 
approximation to update the model [12]. The Gaussian 
distributions of the adaptive mixture model are then evaluated 
to determine which are most likely to result from a background 
process. Each pixel is classified based on whether the Gaussian 
distribution which represents it most effectively is considered 
part of the background model. 

     

Fig. 7. On the top left is shown an example of background 
subtraction. On the top right are shown the 2-D and 3-D NCDT 
kernel, respectively. The following images are subsequent 
views of a female pedestrian (frames 1, 31, 51 and 70). 

5. CONCLUSIONS 

We have described the implementation of a scaling, normalised 
Chamfer distance kernel as a weighting and constraining 
function applied to the mean shift tracking algorithm that 
maximises the similarity between model and candidate 
distributions in colour space. In comparison with the E-kernel, 
used as an exemplar of a radially symmetric function, 

application of the NCDT-kernel can achieve better results 
because it can reject false nodes that are caused by the 
inclusion of changing background pixels. The processing time 
is sufficiently small for real time operation, as the added cost of 
foreground-background separation is offset by the more rapid 
finding of the correct mode. The results presented on a number 
of video sequences show that the NCDT-kernel algorithm 
performs well in terms of improved stability, accuracy and 
robustness. 
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