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ABSTRACT 

In this paper, we propose a novel video object tracking approach 
based on kernel density estimation and Markov random field 
(MRF). The interested video objects are first segmented by the 
user, and a nonparametric model based on kernel density 
estimation is initialized for each video object and the remaining 
background, respectively. A temporal saliency map is also 
initialized for each object to memorize the temporal trajectory. 
Based on the probabilities evaluated on the non-parametric models, 
each pixel in the current frame is first classified into the 
corresponding video object or background using the maximum 
likelihood criterion. Starting from the initial classification result, a 
MRF model that combines spatial smoothness and temporal 
coherency is selectively exploited to generate more reliable video 
objects. The nonparametric model and the temporal saliency map 
for each video object are updated and propagated for the future 
tracking. Experimental results on several MPEG-4 test sequences 
demonstrate the good segmentation performance of our approach. 

Index Terms— Video object segmentation, Video object 
tracking, Kernel density estimation, Markov random field

1. INTRODUCTION 

Video object segmentation provides a content-based representation 
for the pixel-based or block-based source video, and it greatly 
benefits many multimedia applications including region of interest 
(ROI) coding, intelligent video surveillance, interactive video 
editing and manipulation, and specific object query and retrieval. 
There have been many approaches proposed for video object 
segmentation, both automatic and semi-automatic dependent on 
the target applications. Although researches on video object 
segmentation have progressed a lot in the recent years, automatic 
segmentation is still applicable to moving objects [1, 2] or some 
specific objects with a prior knowledge [3]. Semi-automatic 
segmentation is a more practical way to segment generic objects in 
a variety of video sequences [4-9]. A tracking based paradigm is 
commonly adopted in both automatic and semi-automatic video 
segmentation approaches, in which the video objects in the first 
frame can be automatically or interactively segmented by the end 
user, and the video objects of subsequent frames are generated by 
tracking of previous video objects. Therefore, the initial video 
object may be obtained by different ways, but the following video 
object tracking algorithm is interchangeable for both automatic and 
semi-automatic approaches. 

The problem of video object tracking can be explicitly or 
implicitly transformed into a classification problem. Some 
approaches directly perform a binary classification on the pixel or 
region level [4-6]. The region classification scheme is proposed in 
[4], in which each segmented region in the current frame is 
backward projected into the previous frame, and then is classified 
into the video object or the background based on the overlapped 
area between the projected region and the previous object. The 
main drawback of region classification is that the extracted video 
objects are totally determined by the spatial region partition result 
of the current frame. The pixel classification is incorporated in [5, 
6] to obtain a finer video object at the accuracy of pixel level, but 
the classification is still individually performed on each pixel 
based on the projection result. Although the above approaches are 
efficient, its main limitation is the lack of a clearly defined model 
for video object, and the spatial context from neighboring pixels or 
regions are totally ignored. Other approaches exploit some form of 
parametric models such as Gaussian mixture model (GMM) to 
compactly represent the whole video object [7, 8] or homogenous 
sub-object regions [9]. The model is propagated frame by frame 
and updated using the expectation maximization (EM) algorithm 
during the whole tracking process. However, the number of 
components in GMM needs to be predetermined, and the 
underlying assumption of Gaussian distribution is not always 
applicable to any sequence. The only use of chromatic features in 
GMM usually results in that other parts with a similar color 
distribution in the scene are likely to assign to the video object [7]. 
Although the addition of spatial features into GMM can be used to 
coarsely model the spatial extent of an object, the updating of 
model is not well adapted to the spatial extent over time [8, 9]. 

In this paper, we propose to use kernel density estimation [10] 
based nonparametric models to represent both video objects and 
background, which needs no assumption of underlying distribution 
compared with the commonly used parametric models mentioned 
above. The proposed approach can also be considered as a pixel 
classification approach, but the classification is not only dependent 
on the estimated nonparametric models, but also dependent on the 
classification result of the neighboring pixels by using Markov 
Random Field (MRF) [11]. Spatial context and temporal coherency 
modeled in MRF are exploited to ensure a more robust 
segmentation performance. 

The rest of this paper is organized as follows. Section 2 
describes the nonparametric modeling based on kernel density 
estimation for video objects and background. Section 3 details the 
proposed MRF classification approach for video object tracking. 
Experimental results are presented in Section 4, and conclusions 
are given in Section 5. 
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2. NONPARAMETRIC MODELING 

Initial video objects can be first obtained for the following video 
object tracking in an automatic or interactive way. In this paper, 
the interested video objects are manually segmented in the first 
frame by the user, and an interactive segmentation tools proposed 
in our previous work [6] is employed to conveniently obtain the 
desired video objects. Multiple video objects may be segmented 
from the first frame and simultaneously tracked in the subsequent 
frames. An example of initial object segmentation is illustrated in 
Fig. 1. The first frame of the sequence Table Tennis is shown in 
Fig. 1(a), in which the interested objects and the background are 
marked by red and blue scribbles, respectively. The two extracted 
video objects, i.e., the arm holding the racket and the ball, are 
shown in Fig. 1(b). The obtained initial video objects and 
background are then represented using the nonparametric models 
based on kernel density estimation. 

Generally, assume there are totally n  video objects extracted 
in the first frame, all pixels in the inner region of each video object 

kvo  constitute a foreground pixel set denoted as ( 1,2,... )kS k n ,
and the remaining pixels that do not belong to any video object 
constitute a background pixel set denoted as 0S . The three pixel 
sets for the two video objects and the background are shown in Fig. 
1(c). Each pixel set is then used as samples to initialize a non-
parametric model using kernel density estimation method for each 
video object or background, respectively. The feature representing 
the pixel sample is commonly denoted as a d-dimensional vector 

d
ix . Specifically, the color and position features are jointly 

used, [ ] ( 5)T
i i i dx c p , in which the color feature ic  is denoted 

as ( , )Y U V  due to the adopted YUV color space, and the position 
feature ip  is denoted as ( , )x y . Given the pixel sample set 

( 0,1,... )kS k n  for any video object or background, the 
probability that a candidate pixel sample cx  belongs to the 
corresponding video object or background is defined as 
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where
k

KH  is a kernel function with the symmetric positive 

definite 5 5  bandwidth matrix kH . Specifically, d-variate 
Gaussian kernel is selected for its continuity, differentiability and 
locality properties, and the kernel function 

k
KH  is defined as 
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For a computationally efficient estimation of bandwidth 
matrix, it is reasonable to assume that the bandwidth for each 
component of the feature vector has no correlation with other 
components, and thus the probability density function in Eq. (2) 
can be further simplified as 

2
, ,

22
1 ,,

( )1 1 1
( | ) exp[ ]

| | 22i k

d
c j i j

c k
S jk k jk j

x x
P S

S x
x       (3) 

The bandwidth matrix is simplified as a diagonal matrix, i.e., 
2 2 2
,1 ,2 ,( , ,..., )k k k k ddiagH , and the bandwidth for each feature 

component can be estimated independently. The binned kernel 
density estimator [12] is adopted due to its computational 
efficiency and the good approximation accuracy. Using the 

segmented arm object in Fig. 1(c) as an example, the marginal 
probability maps evaluated on the chrominance features ( , )U V  is 
shown in Fig. 1(d), and the marginal probability maps evaluated on 
the position features ( , )x y  is shown in Fig. 1(e), respectively. 

(a)                               (b)                                (c) 

(d)                                               (e) 
Fig. 1. Video object initialization and probability maps based on 

kernel density estimation. 

Besides the above probability model for color and position 
features in Eq. (3), a temporal saliency map ( 1,2,..., )t

kTSM k N
is also initialized for each video object 

1 1,
( )

0,
i k

k i

vo
TSM

otherwise
p

p         (4) 

where the superscript 1t  denotes the first frame. The temporal 
saliency map is used to memorize the temporal trajectory of each 
video object till the current frame t , and its value ( )t

k iTSM x  can 
be considered as a prediction of possibility that the pixel ix
belongs to kvo  in the current frame t . The use and updating of 

t
kTSM  will be described in the following section. 

3. MRF CLASSIFICATION 

Based on the probability density functions defined for each video 
object with the form of Eq. (3), the most probable video object 
label ik for each pixel ix  in the current frame is first determined 
by the following maximum likelihood criterion 

1,2,...,
arg max ( | )i i kk N

k P Sx         (5) 

The likelihood that the pixel ix  belongs to the most probable 
video object rather than background is then defined as 

0
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A label field { | , }i i iL l i l that represents the initial 
classification result is thus generated based on the above likelihood 

, ( ) 0
0,

i i
i

k if lh
l

otherwise
x

   (7) 

where the value of label il  indicates whether the pixel ix  belongs 
to the most probable video object or the background. The set 
contains the indices for pixels defined on the image lattice, and the 
label set { ,0}i ik  for each pixel ix  is a limited set containing 
only two labels, which greatly reduces the computation load in the 
case of multiple objects. 
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The number of connected components cn  in the above initial 
label field is then determined by the connected component labeling 
algorithm. If cn n , it implies that each connected component 
may well represent each video object. In this case, the background 
is usually greatly different from video objects, and thus the initial 
classification is sufficient for obtaining a clean object 
segmentation result. However, cn  is usually greater than n  for 
many sequences, it implies that some noisy regions and small gaps 
appear in the initial label field, which cannot represent an accurate 
video object segmentation result. For example, the 18th frame of 
the sequence Table Tennis is shown in Fig. 2(a), and the initial 
classification result shown in Fig. 2(b) contains small noisy 
regions and holes. 

In the case of cn n , MRF model is exploited to refine the 
initial classification result to obtain more complete and compact 
video objects. Given the set of observations { | }iO o i  where 
each observation is denoted as 0{ , ( | ), ( | )}

ii i i i ko P S P Sx x x , the 
goal of MRF classification is to estimate an optimized 
configuration optL , which is obtained by minimizing the following 
energy function of the equivalent Gibbs distribution 

( , )
( | ) ( , ) ( , ) ( , )P T S

i i ij
i i i j

U L O V L O V L O V L O      (8) 

The first term in the energy function is a data-driven term, 
which represents the likelihood of the pixel ix  belonging to the 
most probable video object rather than the background 
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The second term is a temporal continuity term, which 
considers the trajectories of tracked objects in previous frames and 
thus enhances the coherency of objects through the whole 
sequence. The temporal saliency map t

kTSM  for the current frame 
is first updated as follows 
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where imv  is the estimated motion vector of the corresponding 
MB containing the pixel ix . It is observed from Eq. (10) that the 
previous video object tracking results are propagated into the 
current temporal saliency map using the estimated motion vectors. 
The temporal continuity term is then defined as 
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For the example frame in Fig. 2(a), the temporal saliency 
maps for the arm and ball are shown in Figs. 2(c) and (d), 
respectively. It can be seen that the trajectories of arm and ball are 
memorized in the two maps, in which brighter pixels indicate a 
higher saliency belonging to the corresponding video object. 

The last term is a spatial smoothness term, which is defined 
on the clique set  containing all the two-site cliques ( , )i jp p

3

3

( , )
,

( , )
( , )

,

i j l
i j

h lS
ij

h i j
i j

h l

c
w l l

c c
V L O

c
w l l

c c

d c c

d c c
               (12)

(a)                        (b)                         (c) 

(d)                        (e)                         (f) 
Fig. 2. Illustration of MRF classification process. 

where ( , )i jd c c  is the Euclidean distance between the two color 

features ic  and jc  and is normalized into the range [0,255] , and 

hc  and lc  is the high and low limit for color dissimilarity. The 
adjacent pixels ip  and jp  are considered to exhibit the same color 

if the color distance ( , )i jd c c  is smaller than lc , while they are 

considered to exhibit totally different color when ( , )i jd c c  is 

greater than hc . Eq. (12) indicates that the adjacent pixels with 
similar color are likely to belong to the same object, while they are 
likely to belong to different objects when they exhibit different 
color. The two color limits hc  and lc  are set to 16 and 80, 
respectively. 

The three weights 1w , 2w  and 3w  determine the relative 
contribution of the three energy terms. We found by the 
experiments that 1 0.25w , 2 0.1w  and 3 1w  lead to a 
satisfactory classification result. The minimization of the energy 
function ( | )U L O  is performed using high confidence first (HCF) 
method. The resultant label field from the above MRF 
classification represents the video object mask as shown in Fig. 
2(e), and the segmented two video objects are shown in Fig. 2(f). 

The MRF classification result in the current frame is finally 
employed to update the nonparametric models for each video 
object and background. The pixel sample set generated for kvo  in 

the current frame t  is denoted as { | }t
k i iS l kx , and the pixel 

sample set kS  used for estimating the object model is then updated 

as 
1

t
m

k k
m t r

S S , which indicates that the tracked video objects in 

the most recent r  frames are considered in the pixel sample set 
kS . Accordingly, the corresponding non-parametric model based 

on kernel density estimation is updated using Eq. (3). The frame 
number r  is set to 3 in our experiments, a moderate value that 
makes a good balance between the sensitivity and robustness of 
nonparametric models of video objects. 

4. EXPERIMENTAL RESULTS 

The proposed video object tracking algorithm is evaluated on 
several MPEG-4 test sequences. Experimental results on three of 
them are shown in Figs. 3, 4, and 5. For all sequences, video 
objects in the first frame are interactively segmented and the non-
parametric model is initialized using kernel density estimation, like 
the example described in Section 2. 

The first sequence Bream is with a uniform background, and 
the segmented objects shown in Fig. 3 is actually the initial 
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classification result based on the likelihood defined in Eq. (6), 
while the following MRF classification is skipped since there is 
only one connected component for the only one object in the initial 
label field. The second sequence Table Tennis is with a clutter 
background and a medium amount of motion. The interested two 
objects are the arm holding the racket and the ball. The third 
sequence Foreman is with a complex moving background that 
exhibits a low contrast with the interested object, the talking man. 
For these two sequences, the initial classification result cannot 
accurately represent the video objects, and the segmentation 
quality of video objects is gradually degraded in the whole 
sequence if the model is directly updated using the initial 
classification results. Therefore, MRF classification is exploited to 
obtain a refined object segmentation result. It can be seen from 
Figs. 3-5 that the video objects with good subjective visual quality 
are obtained during the whole tracking process. 

The proposed approach is first subjectively compared with the 
GMM based object segmentation approach in [8] on the sequence 
Foreman. The extracted video object in the first frame is the same 
for both approaches, and some segmented objects from selective 
frames using both approaches are shown in Fig. 5. The number of 
Gaussian components in GMM is automatically determined by the 
criterion of Minimum Description Length (MDL). Comparing the 
segmentation results on the same frames (see the top and bottom 
rows), it is obvious that our segmented objects exhibit a better 
visual quality, while small isolated regions and holes in the bottom 
row are very annoying for human visual system. The segmentation 
performance of the proposed approach is further objectively 
evaluated using two measurements, that is, precision and recall. 
We manually segment the video object from the sequence 
Foreman as the ground truth, and the average precision and recall 
are 96.59% and 96.18% using our approach, while 96.54% and 
95.15% using the GMM based segmentation approach [8]. The 
better segmentation quality of our approach is also demonstrated 
by the relatively higher values on both objective measurements. 

5. CONCLUSION 

We have presented a novel video object tracking approach based 
on kernel density estimation and Markov random field, which can 
be exploited in both automatic and semi-automatic segmentation. 
Each video object and background is represented by the kernel 
density estimation based nonparametric model, and initialized with 
a temporal saliency map, respectively. Using the maximum 
likelihood criterion, each pixel in the input frame is first classified 
into video object or background. The Markov random field that 
suitably models spatial smoothness and temporal coherency is 
selectively exploited to refine the classification result for more 
accurate video objects. The non-parametric models and temporal 
saliency maps are updated and propagated during the whole 
tracking process. Experimental results show that our approach can 
efficiently track video objects with good visual quality. 
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Fig. 3. Tracking results for Bream (Frames: 1, 120, 180, 220). 

Fig. 4. Tracking results for Table Tennis (Frames: 5, 10, 20, 30). 

Fig. 5. Tracking results for Foreman using our approach (top row) 
and GMM based segmentation approach [8] (bottom row). (Frames: 
30, 60, 90, 150). 
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