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ABSTRACT

An effective texture synthesis method is presented that is
inspired by the work of Kwatra et al. [1]. Their algorithm is
non-parametric and patch-based. Blending between
overlapping patches is optimized using graph cut techniques.
We generalize the initial approach [1] to achieve a new
synthesis algorithm that yields improved results for a much
larger class of natural video sequences. For that, two major
extensions have been provided: 1) the ability to handle
constrained texture synthesis applications and 2) robustness
against global camera motion. Constrained synthesis thereby
refers to integrating synthetic textures into natural video
sequences, as opposed to unconstrained texture synthesis,
where (infinite) spatio-temporal extensions of single textures
are generated. Camera motion compensation enables
applicability of the synthesis algorithm to video sequences
with a moving camera. The results presented in this paper
show that the proposed improvements yield significant
subjective gains compared to the initial algorithm.

Index Terms— Video, constrained, texture, synthesis,
graph-cut, GMC

1. INTRODUCTION

Texture synthesis consists in generating a synthetic texture
that is typically objectively different from a given texture
example but it is perceptually similar. Typical applications
of texture synthesis algorithms are special effects for cinema
and television, computer-generated animation, computer
games, and video restoration.

The major problems that have to be tackled in any
texture synthesis process are roughly two-fold. The first
challenge steers the accuracy of the synthetic textures and
relates to the proper estimation of the underlying stochastic
process of a given texture based on a finite sample of it. The
second challenge is the efficient sampling of a high-
dimensional probability density function (pdf) to generate
new textures from a sample[2] determining the
computational complexity of the texture generation
procedure.

Texture synthesis approaches can be divided into two
categories: parametric and non-parametric methods.
Parametric synthesis approaches approximate the pdf by
which the texture is assumed to be modeled using a compact
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model with a fixed parameter set[3]. Non-parametric
synthesis approaches do not explicitly estimate the pdf by
which the texture is assumed to be modelled. They rather
measure the latter from the texture example, which can be a
2D image or a video signal. Non-parametric approaches
typically formulate the texture synthesis problem based on
Markov Random Field (MRF) theory [1],[2]. The generative
stochastic process that is used as the texture model is
assumed to be both local and stationary in the MRF context.
Non-parametric approaches can be sample or patch-based.
Sample-based algorithms update the synthetic texture
sample-wise [2] while patch-based approaches operate a
patch-wise update [1], i.e. a set of samples is updated
simultaneously. Not only do non-parametric synthesis
approaches typically yield better synthesis results than
parametric algorithms, also can they be successfully applied
to a much larger variety of textures [1].

In this work, a generalization of the approach by
Kwatra et al. [1] is presented. Constrained texture synthesis
under moving camera conditions is enabled by our approach.
In the remainder of the paper, the initial synthesis framework
by Kwatra et al. is introduced (Sec.2). An in-depth
description of the proposed improvements is given in Sec. 3,
while experimental results are presented in Sec. 4.

2. VIDEO SYNTHESIS USING GRAPH CUTS

The synthesis algorithm developed by Kwatra et al. [1] can a
priori be applied to plane (2D) and volumetric textures
(2D+t). It is non-parametric and can thus render a large
variety of video textures. The synthetic texture is updated
patch-wise by disposing the patches in an overlapping
manner. The originality of the approach by Kwatra et al.
resides in the fact that it formulates the texture synthesis
problem as a graph cut issue. Hence, the optimal seam
between two overlapping patches, which is the seam yielding
the best possible MRF likelihood among all possible seams
for the given overlap, can be computed, thus minimizing
subjectively annoying edges at patch transitions [1].

2.1. Sampling Procedure

Given a texture sample 7  and an empty lattice .5 to fill in,
the sub-patch matching approach proposed by Kwatra et al.
is used. The latter approach consists in placing patches in §
in an overlapping manner, where the first patch is typically
selected at random in the texture sample. The patches are

ICIP 2007



thereby of a predefined size, typically much smaller than the
texture example.

The costs for a given translation s of a sub-patch of the
output texture in 7 are given in (1). # corresponds to the
portion of the input overlapping the sub-patch and p is a
sample location in # [1]. is the size of #. The output
sub-patch selected for this operation is the continuation part
of the last patch placed in S (cp. Fig. 1). (1) basically
corresponds to the normalized sum of squared errors. The
offset selection is operated by means of a stochastic criterion
that is dependent on E [1].
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The sub-patch matching approach can be applied to
stochastic and volumetric textures. It captures the local
coherency of spatially unstructured textures like water,
smoke, etc. The size of the sub-patch, copied from the
texture sample towards ., is chosen in a way that it is
slightly larger than the overlap region in the output texture.
This is done to ensure that the output texture is grown with
each update patch. For volumetric textures, the video
sequence is seen as a volume composed of voxels (volume
elements). The patches are spatio-temporal cuboids that can
be placed anywhere in the synthesized texture volume 5.

2.2 Graph Cut Formulation of Texture Synthesis

Kwatra et al. [1] propose a graph cut formulation of the
problem of finding an adequate seam between overlapping
patches. Once the overlap region (synthetic texture) and the
continuation patch (texture sample) have been found, the
graph cut algorithm determines the path from one end to the
other of the overlap region that minimizes the subjective
annoyance of the blending. Fig. 1 delineates the approach
based on a 2D texture synthesis example. The path specifies
which irregular shaped portion of the continuation patch
(patch 2), found in the texture sample, is transferred to the
synthetic texture. Due to the irregular shape of the copied
region, blocking effects can be avoided and seamless
transitions be generated. Potentially subjectively annoying
artifacts of the blending are captured by an adequate cost
function that is applied to any sample transition in the
overlap region.

The cost function M’ used by Kwatra et al.[l]
constrains the optimal path determined by the graph cut
algorithm. Hence, its formulation is crucial with regard to
the quality of the synthesis results. The graph cut
formulation of the texture synthesis problem is depicted
in Fig. 2. A 5x5 grid is shown, where each of the numbered
square boxes corresponds to a sample in the overlap area.
The samples marked with 'A" may be seen as the overlap
region in the output texture, while the samples marked with
'B' would represent the corresponding portion of the
continuation patch found in the example texture. The graph
cut algorithm links adjacent sample pairs via the cost
function. Let 'A' stand for the source and 'B' for the sink.
Some samples are then linked to sink and source with an
infinite weight. Hence, a cut at these transitions is made

impossible as it would yield infinite costs. This is done in
order to constrain samples adjacent to sink and source to
come from B and A respectively, which reflects the fact that
false boundaries at transitions between overlap region and
sink (or source) should be avoided. The optimal cut (red line
in Fig. 2), i.e. the cut yielding minimum costs, is determined
by applying adapted optimization algorithms [1].

Texture
I continuation
—
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Texture sample

Synth. texture

Patch #2 Patch #1

Fig. 1: Illustration of graph cut synthesis method in an
unconstrained framework [1]

The cut specifies the contribution of each patch to the
overlap region. For instance, in Fig. 2, the samples at the left
hand side of the cut are provided by patch A, while the
others come from patch B. For volumetric textures, the min-
cut can be seen as a surface within the 2D+t space.

3. PROPOSED IMPROVEMENTS

The approach by Kwatra et al.[l] yields impressive
synthesis results for various spatio-temporal textures with
and without local motion activity. Their algorithm is,
however, designed to synthesize single, autarkic textures. A
further limitation is that they assume camera motion to be
absent. Hence, enhancements are required to generalize the
underlying algorithm by Kwatra et al. to achieve successful
synthesis of natural video sequences. Synthesis of the latter
is particularly critical, as synthetic textures are inserted into
video scenes featuring natural textures. Therefore, even
small inconsistencies might become visible if the appearance
of the synthetic textures does not match the natural textures
in terms of motion, sharpness, intensity, etc.

3.1 Constrained Texture Synthesis

Some application scenarios like content-based video coding
require the extension of the algorithm by Kwatra et al. to a
texture synthesis module with boundary constraint handling.
In the context of constrained texture synthesis, missing
textures can be considered as large spatio-temporal “holes”
in a given video sequence that must be “filled” (cp. Fig. 3).
The boundary constraint relates to the texture(s) surrounding
the area to be synthesized. This constraint is taken into
account in order to avoid subjectively annoying artifacts at
the transition between synthetic and natural textures.
Constraint texture synthesis is a somewhat complicated task
as both spatial and temporal inferences are required.
Inappropriate synthesizer decisions may yield annoying
artifacts as flickering or spurious spatio-temporal edges.

In the constrained synthesis scenario, the input video
sequence is temporally segmented as depicted in Fig. 4. The
first group of pictures consists of a reference burst (R1) that
temporally precedes the synthetic burst (S1). The synthetic
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burst is itself followed by another reference burst (R2) in
temporal order. The two reference bursts and the synthetic
burst give a group of bursts (GOB) R1S1R2. The reference
bursts are (manually) chosen such that they contain the
sample texture 7 required to synthesize the empty lattice S'
in the synthetic burst. The second GOB consists of the last
reference burst of the first GOB, R2, and the next synthetic
(S2) and reference (R3) bursts to give R2S2R3. Hence, an
overlapping GOB structure is used. The succeeding GOBs
are composed accordingly until the end of the video
sequence is reached.

M(2,3,A, B)\

Fig. 2: Illustration of graph cut for texture synthesis

The patch placement procedure is affected in the given
scenario. In fact, due to the boundary constraints, the first
patch can not be selected at random from 7. The patches at
the boundary of the synthesis area must be placed such that
they overlap the boundary texture (cp. Fig. 3). This in turn
implies that the constraint texture must be of the same class
as the texture to be synthesized, which must be determined
by the texture analysis method. The latter is assumed to be
given as the current work focuses on texture synthesis. The
graph cut algorithm is now applied to aforesaid overlap
region, which yields an irregular boundary between the
spatio-temporal constraint region and the synthetic video
texture. This ideally decreases the perceptibility of the
boundary given an adequate cost function. Irregular
boundaries are also obtained in temporal direction. That is,
the cut generated by the graph cut algorithm typically leads
through some reference pictures. Hence the latter usually
feature a small proportion of synthetic samples if they are
close to an S burst, which allows a smooth transition
between R and S bursts.

3.2 Temporal Alignment

Kwatra et al. implicitly assume a static camera scenario [1].
This is a very restrictive framework, as many natural video
sequences feature some degree of camera motion. This
constraint has to be relaxed for achieving a generic texture
synthesis tool. Camera motion is typically not known a priori
and requires a motion estimation process. The proposed
global (camera) motion compensation (GMC) algorithm,
also called temporal alignment in the following, is based on
dense motion fields. Robust statistics are operated on the
estimated motion vectors to derive the apparent camera
motion and compensate it.

The first step of the temporal alignment algorithm
consists in  determining the perspective motion

parameters [4],[5] describing the camera motion between
adjacent pictures starting from the outmost pictures.

Constraint
texture
Texture Sample Output te;x:;r:
Fig. 3: Constrained 2D texture synthesis principle
R, R>
— —

Fig. 4: Video sequence structure for texture synthesis

Once the frame to frame global motion is known, the
reference time instance t, is shifted towards the designated
frame, e.g. the mid-picture of the GOB, by accumulation of
the motion parameter sets, which can be obtained by
chaining  single, ie. frame-to-frame, perspective
transformations.

Let F, and F.,; be two successive frames of a video
sequence. Then the dense motion field between the two is
first estimated wusing the approach by Black and
Anandan [6]. The samples belonging to the background, i.e.
regions without local motion activity underlying only global
camera motion, are determined based on robust statistics,
namely M-estimation [4]. The latter is an iterative model-
fitting approach that detects outliers within a dataset a
posteriori and without any prior knowledge of outlier
characteristics. The observations are defined as a set of
motion vectors in our specific framework, while outliers
(non-background samples) can be seen as motion vectors
that reveal different motion properties than the inliers
(background samples). The observed motion field [6] is
approximated using the perspective motion model as already
explained above. This motion model is selected due to its
ability to describe translation, rotation, and scaling of a
planar patch in 3D as we assume this geometry for
background textures. The M-estimator minimizes the
influence of outliers on the model optimization by
penalizing motion vectors yielding high modelling
costs [4],[5]. The cost function is thereby given as the
deviation between the observed [6] and the modelled dense
motion field.

After alignment w.r.t. the reference time instant t, has
been done, texture synthesis can be operated as described in
the previous sections, which results in a synthetic texture
w.r.t. t,. Back-warping the synthetic pictures towards the
genuine time instant yields a total of two interpolation steps
per sample (warp and back-warp), which may give blurry
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results. Hence, the number of interpolations is minimized for
improved visual quality by operating “virtual synthesis” in
the warped domain. That is, each sample (texture samples,
constraint and synthetic regions) is assigned a unique index
within a GOB in the genuine coordinate system. Warping is
applied both to the video signal and to the index maps
yielding a first set of spatio-temporal index maps, 4, in the
warped domain. The synthetic samples are inserted into the
warped video, while their indexes are inserted into a second
set of index maps, #', during synthesis. Finally, the
synthetic samples, of which the indexes are held by 4/, are
assigned to the unwarped region to be synthesized by
looking up their destination in 4 at the same spatio-
temporal location (x,y,t).

4. EXPERIMENTAL RESULTS

Experimental evaluations are conducted to demonstrate that
the proposed generalizations of the approach by Kwatra et
al. [1] entail significant perceptual gains. For that, two video
sequences are used that show water with significant local
motion activity within a natural video sequence. The video
clips have CIF resolution (352x288), a frame rate of 15 Hz,
and both feature non-zero camera motion. The reference
burst length is set to 20 pictures, while the synthetic burst
length is set to 40 pictures. The spatial boundary conditions
are sized 16 samples each (x and y direction), while the
temporal boundary condition is sized eight samples. Note
that the temporal boundary condition is a subset of the
reference bursts, while the spatial boundary condition is a
subset of the synthetic burst. The patch size is set to
32x32x16 (height x width x temporal depth). Up to half of a
patch overlaps either the spatio-temporal boundary condition
and/or neighboring patches.

The synthetic video sequences are subjectively
evaluated using the Double Stimulus Continuous Quality
Scale (DSCQS) method [4]. That is, 10 test subjects are
asked to comparatively rate the quality of a synthetic clip
and the corresponding original video sequence on a scale
from 0 to 100. Subjective opinion scores are obtained as a
result. Perceptual degradations due to texture synthesis can
thus be measured. Fig. 5 depicts the subjective evaluations
obtained for the synthetic video clips with camera motion.
Note that the so-called whiskers are drawn from the lower
(upper) quartile to the smallest (largest) subjective score and
thus cover the full span of the given data. The horizontal line
within a box represents the median of the corresponding data
samples. It can be seen that the synthetic clip (BP 1)
generated without adequate motion compensation received
significantly lower rates from the test subjects compared to
the original video sequence (BP 2). Subjective ratings are
significantly improved (median opinion score moves from
45 to 55), when temporal alignment is conducted (BP 3).
The overlapping notches of BP 3 and BP 4 show that no
statistically relevant difference can be observed by the test
subjects between the reference video clip (BP 4) and the
synthetic clip (BP 3). Note that the rates assigned by the test
subjects to the same reference sequence (cf. BP 2 and BP 4)
vary depending on the video it is compared to.
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Fig. 5: Boxplots (BP) of opinion scores for constrained
texture synthesis with and without camera MC. Synthetic
videos, no MC (BP 1), references (BP 2), synthetic, MC (BP
3), references (BP 4)

The experiments conducted in this section show that
temporal alignment and constrained texture synthesis
optimizations proposed in the present work are important for
the perceived quality of a synthetic video sequence. The test
sequences can be viewed at our web-page
http://ip.hhi.de/imagecom_G1/ImprovedTS.htm.

5. CONCLUSIONS

A graph cuts video synthesis approach for generic video
sequences has been presented in this paper. The relevance of
the proposed algorithm is given by the fact that it is non-
parametric and patch-based, which makes it applicable to a
large class of 2D and 3D textures. The basic approach
proposed by Kwatra et al. [1] is generalized by extending it
to realistic video sequences with regard to constrained
texture synthesis and camera motion compensation.
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