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ABSTRACT

Hybrid variable length coding (HVLC) was recently proposed as a
novel entropy coding scheme for block-based image and video com-
pression, in observation of the inefficiency of the conventional run-
level variable length coding scheme in coding consecutive nonzero
transform coefficients. In HVLC, each transform block is parti-
tioned into low-frequency and high-frequency regions, and the coef-
ficients in the two regions are coded separately by different schemes.
The partition of the transform block was performed based on a pre-
defined, constant breakpoint. In this paper, we propose to partition
the transform block using a variable breakpoint that is adaptive to the
local context. We present a method to find one optimal breakpoint
per transform block or per multi-block partition efficiently, and we
show that by using variable breakpoint, the efficiency of HVLC can
be improved considerably compared to the constant breakpoint case.

Index Terms— Image coding, Video coding, Data compression.

1. INTRODUCTION

Prevailing video coding standards such as MPEG-2/4 and H.26x
commonly adopt a codec model that uses a block-based transform,
quantization, and entropy coding. Variable length coding (VLC), for
its nice tradeoff in efficiency and simplicity, is widely deployed for
the entropy coding, particularly when the codec is desired to have
low computational complexity. Conventionally, the coefficient ar-
ray is represented by a series of (run, level) symbols, where “run”
indicates the number of zeros preceding a nonzero coefficient and
“level” indicates the magnitude of the nonzero coefficient. The en-
tropy encoder assigns one variable length codeword to each of the
symbols', and VLC tables are designed such that symbols appear-
ing more often are encoded by shorter codewords, thus resulting in
a compressed bitstream.

The VLC based on the run-level representation, referred to as
RL-VLC, is efficient in coding scattered nonzero coefficients. Nev-
ertheless, it is inefficient in coding clustered nonzero coefficients,
due to the fact that n separate codes are required to represent n con-
secutive nonzero coefficients, each of which has a run equal to zero.
Using multiple VLC tables is a solution to improve the efficiency
of RL-VLC for DCT blocks, and its extreme case has been studied
in [3], where one VLC table is generated for each frequency index
of the transform block. The local context of DCT blocks was not
considered in [3].

'H.264/AVC [1] deploys a more sophisticated VLC scheme which is
specifically suitable for small transform blocks (4 x 4 and 2 X 2). In this
paper, we mainly consider 8 x 8 transform blocks, and for comparison we
refer to the conventional VLC scheme in H.263 [2] for its simplicity. More
remarks regarding the proposed coding scheme in comparison with H.264
will be presented at the end of the paper.
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Different from the sole use of RL-VLC, hybrid variable length
coding (HVLC) was recently proposed [4], which accounts for the
clustered nature of the quantized nonzero coefficients in the low-
frequency (LF) region and their scattered nature in the high-frequency
(HF) region by employing two position and amplitude coding schemes.
In the LF region, the runs of consecutive zero-value coefficients and
the runs of consecutive nonzero coefficients are coded as a pair using
atwo-dimensional VLC table. The amplitudes of the nonzero-valued
coefficients are then coded by an independent, one-dimensional VLC
table. This coding scheme is referred to as 2DP1DA in [4]. In the
HF region, RL-VLC is retained to code the position and amplitude
of each nonzero coefficient as a pair. A detailed review of HVLC is
presented in Section 2.

The previous work on HVLC also did not take into account the
local context of DCT blocks. The partition of a transform block was
performed based on a constant, pre-defined breakpoint. Although us-
ing a constant breakpoint avoids introducing additional overhead to
the bitstream, it does not account for the local statistics of the current
block(s). The most efficient partition of a transform block strongly
depends on the context of the block. Coding scattered nonzero co-
efficients by 2DP1DA or clustered nonzero coefficients by run-level
coding would not be efficient. Empirical studies also confirmed the
difficulty of finding a common “optimal” breakpoint for given cod-
ing parameters that would be applicable to generic video sequences.
To improve the efficiency of HVLC, in this paper we propose the
use of a variable breakpoint in partitioning the transform block into
low-frequency and high-frequency regions. In doing so, a two-pass
coding algorithm is developed, which finds one optimal breakpoint
for each transform block. The breakpoint itself is coded by a sepa-
rate VLC table. In order to reduce the overhead of coding one break-
point per block while taking advantage of the statistical correlation
of neighboring blocks, the algorithm is extended to find one optimal
breakpoint for a frame partition that consists of an arbitrary number
of blocks. We provide preliminary experimental results to show that,
despite the overhead introduced by coding the variable breakpoint,
using variable breakpoint can improve the efficiency of HVLC con-
siderably compared to the constant breakpoint case.

The rest of the paper is organized as follows. Section 2 provides
an overview of HVLC. In Section 3, we present the methods that find
the variable breakpoint based on the local statistics of a transform
block or a multi-block partition. We present preliminary results in
Section 4 to evaluate the performance of the proposed methods and
provide concluding remarks in Section 5.

2. HYBRID VARIABLE LENGTH CODING

The principal idea of HVLC is illustrated in Figure 1. In HVLC, a
breakpoint along the coefficient scan path is first defined, as shown
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Fig. 1. Illustration of HVLC: (a) Coefficient scan of an 8 x 8 block along a pre-defined path, e.g., zigzag; (b) The block diagram of HVLC;

(c) The block diagram of the 2DP1DA coding for LF coefficients.

in Figure 1(a). The coefficients below and above the breakpoint are
considered as LF and HF coefficients, respectively. The LF coeffi-
cients are coded by a two-dimensional position and one-dimensional
amplitude (referred to as 2DP1DA) coding scheme, which is illus-
trated in Figure 1(c), while the HF coefficients are coded by RL-VLC
or its equivalent. Figure 1(b) shows a block diagram of the complete
HVLC scheme.

It should be noted that in 2DP1DA, a run of nonzero coefficients
implies that the following coefficient is a zero-value coefficient, as
otherwise it would have been counted into the nonzero cluster and a
larger cluster would have been obtained. Therefore, each run of zero-
value coefficients can be reduced by 1 before it is coded, with the
exception of the first run at the beginning of a block. This results in
a shorter codeword to encode the positions of LF coefficients. Each
symbol coded by 2DP1DA therefore has the following form:

{

where R, and R,, denote the run of zeros and the run of nonzeros, re-
spectively, and [ast is a binary symbol indicating the “end-of-block”
information, similar to H.263 [2].

The breakpoint, denoted by N hereinafter, is a coefficient index
that divides the coefficient sequence into LF and HF regions along
the reordering path. The breakpoint must be known to the decoder
to properly decode the coefficients. To avoid using two codewords
for one coefficient around the breakpoint, the breakpoint is extended
beyond the LF region to the last coefficient coded by the LF coding
scheme. This extended breakpoint is termed a soff breakpoint and is
denoted by N, for differentiation.

Determining a proper breakpoint is crucial for the coding effi-
ciency of HVLC. On one hand, given the LF and HF coding schemes,
there exists an optimal breakpoint within each block of coefficients,

(R:, Ry, last), for the first symbol in a block,

(R: — 1, Ry, last), otherwise, M

which results in the minimum number of bits in the coded coeffi-
cients. On the other hand, this optimal breakpoint varies among
blocks and therefore needs to be included in the bit stream, which
may introduce a considerable overhead if it is not efficiently coded.
Preceding studies, as presented in [4], used a constant breakpoint for
the entire video sequence, which is not optimal. In this paper, an ap-
proach that allows HVLC to be performed with a variable breakpoint
is proposed, which will be detailed in the following sections.

Before proceeding, we present an example to end our summary
on HVLC in this section, with the following coefficient sequence:

Index:1 2 3 4 5 6 7 8 9 10 11
Coeff:2 3 2 0 0 1 -2 1 0 0 -1
All the remaining coefficients in the sequence are zeros, and a
constant breakpoint, N = 6, is assumed. Using 2DPIDA for LF
coding and RL-VLC for HF coding, the coefficient sequence will be
coded as

Cp(0,3,0) Ca(2) S(0) Ca(3) S(0) Ca(2) S(0)Cp(1,3,0) Ca(1)

S(0) Ca(2) S(—1) Ca(1) S(0) Crr(1,1) S(1)

In the codeword stream above, C'p, C'4 denote the position and
amplitude codewords, respectively, for 2DP1DA, and C'rr, denotes
the codeword of RL-VLC. S indicates the positive or negative sign of
a nonzero amplitude. Note that the soft breakpoint for this example
is Ns = 9, i.e., the ending position of the second 2DP1DA symbol.

3. VARIABLE BREAKPOINT

There exists an optimal breakpoint for each block of coefficients that
results in the minimum number of bits in coding the block with given
LF and HF coding schemes. In this section, we present the method
to find the optimal breakpoint for each block. Furthermore, we gen-
eralize the method to determine one optimal breakpoint for a frame
partition that consists of an arbitrary number of blocks.
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3.1. Optimal Breakpoint per Block

Finding the optimal breakpoint for a block of coefficients comprises
a two-pass coding process. In the first pass, the entire block is coded
by LF coding, i.e., 2DPI1DA. The coding process starts from the
lowest-frequency coefficient. During the process, a table of can-
didate breakpoints is constructed, which records three quantities for
each symbol that is coded by 2DP1DA: the starting position of the
symbol, the ending position of the symbol, and the accumulated
number of bits that has been consumed to code the coefficients.

As an example, consider the same coefficient sequence in the
preceding section. The HVLC table constructed by the first-pass
coding process will have the following entries:

Symbol index  Start  End  Number of bits
0 0 0 nr(0)
1 1 4 nr(4)
2 5 9 nr(9)
3 10 12 nr(12)

The first entry in the table (symbol index = 0) is a null entry
indicating the state prior to the coding process. The ending position
of each 2DP1DA symbol is the frequency index of the zero-value
coefficient that follows the run of consecutive nonzero coefficients.
For instance, the first 2DP1DA symbol starts at frequency index 1
and ends at frequency index 4 instead of 3. The accumulated number
of bits for coding the coefficients is denoted by nr (x), where x is the
ending position of the present symbol. According to the definition,
nr(0) = 0, and nr(12) is the total number of bits for coding the
entire block by the LF coding scheme.

In the second pass, the entire block is re-encoded by the HF cod-
ing scheme. Unlike the first pass, the coding process is performed
in a reverse order starting from the nonzero coefficient that has the
highest frequency index. Similar to the first pass, the coding pro-
cess counts the accumulated number of bits after coding each sym-
bol. Once the coding process reaches an ending position that was
recorded in the first pass, it adds the accumulated number of bits
consumed by RL-VLC to the corresponding entry in the table. For
the above example, the updated table after the second-pass coding is

Symbol index  Start End  Number of bits
0 0 0 nr(0)+ny(0)
1 1 4 nr (4) +ng (4)
2 5 9 nr (9) + nH(9)
3 10 12 no(12) +nu(12)

where n g (x) denotes the accumulated number of bits when RL-VLC
proceeds to position x in the reverse order. In contrast to the first-
pass coding, ng(12) = 0 this time, and n(0) is the total number of
bits for coding the entire block by RL-VLC.

The optimal breakpoint for coding the block by HVLC is then
obtained by finding the entry with the minimum number of bits in the
resulting table, which will be coded using a separate VLC table. This
optimal breakpoint, as mentioned in Section 2, is a “soft” position,
meaning that it can be represented by any coefficient index between
the starting position and the ending position of the last symbol that
is coded by the LF coding scheme.

3.2. Optimal Breakpoint per Multi-Block Partition

Coding one optimal breakpoint per block introduces a considerable
overhead to the bitstream. On the other hand, considering the corre-
lation of local context, the soft breakpoints of adjacent blocks may
partially “overlap”, in which case choosing a single breakpoint from
the overlapped coefficient indices will provide optimal coding per-
formance for all blocks. When such an overlap does not exist, us-

ing a single breakpoint for multiple blocks may result in degraded
performance for a particular block within the multi-block partition.
Nevertheless, it is expected to provide suboptimal performance in a
statistical sense, while it significantly reduces the overhead of cod-
ing breakpoints. As a result, it achieves a reduced number of bits in
coding the entire partition.

Finding the optimal breakpoint for a multi-block partition con-
sists of three steps. The first step closely follows the process in the
previous subsection to generate an HVLC table for each block of co-
efficients. For presentation convenience, in here we use nbits;(x)
to denote the total number of bits when coding block ¢ with a break-
point x. In other words, we define

nbits;(xz) = np,i(x) + nm,i(x). ?2)

The property of soft breakpoint, namely a breakpoint can be de-
noted by any coefficient index between the starting position and the
ending position of the corresponding 2DP symbol, suggests that the
following equality holds:

’I’LbZ‘tSi(Nsyo) = nbitsi(NsJ) == nbitsi(NS,k), (3)

where N; o and N, represent the starting and ending positions of
a soft breakpoint, respectively.

Using this important equality, individual HVLC tables resulting
from multiple blocks can be merged into a single table for the entire
multi-block partition. The optimal breakpoint for the partition can
then be obtained based on the merged HVLC table.

To illustrate the table-merging process, let us resume the exam-
ple in Section 3.1 and refer to the corresponding transform block as
Block 1. We assume that the HVLC table for one of its adjacent
blocks (referred to as Block 2) has been constructed as follows.

Symbol index ~ Start  End  Number of bits
0 0 0 nbitsz(0)
1 1 6 nbitsz(6)
2 7 9 nbits2(9)
According to (3), the following equalities hold for Block 2:
nbitsa (1) = nbitsz(2) = - - - = nbits2(6),
nbits2(7) = nbitsa(8) = - - - = nbits2(63).

Similar equalities can also be derived for Block 1. To merge the
two individual HVLC tables into a single table, the process starts
with combining the first entries of the two tables, which have both
starting and ending positions equal to 0. The combined entry corre-
sponds to the case of coding both blocks solely by HF coding:

Symbol index  Start  End Number of bits
0 0 0 nbits1(0) 4 nbits2(0)

The first entries are then removed from both the individual ta-
bles. Next, the process inserts one entry at a time to the new table
by choosing the ending position in the two tables that has a lower
coefficient index. The starting position of the new entry is always
the ending position of the last entry plus 1. Every time an ending
position is selected and added to the new table, the corresponding
entry in the old table is removed. In this example, for the second
entry, the starting position is 1, and the lower ending position is 4,
chosen from the HVLC table of Block 1:

Symbol index  Start  End Number of bits
0 0 0  nbits1(0) + nbits2(0)
1 1 4 nbitsi1(4) + nbitsz(4)

Note that there is no computation needed for nbits2(4), as nbitsz(4)

= nbits2(6) according to the equalities obtained for Block 2.
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The corresponding entry in the HVLC table of Block 1 is then
removed, and the table-merging process continues until all the en-
tries are removed from the two individual HVLC tables. The final
merged table for the two blocks is

Symbol index  Start  End Number of bits
0 0 0  nbitsi(0) + nbitsz(0)
1 1 4 nbitsy(4) + nbitsz2(4)
2 5 6 nbits1(6) + nbits2(6)
3 7 9 nbitsi(9) + nbits2(9)
4 10 12 nbits;(12) + nbitsz(12)

Finally, the optimal breakpoint for coding the two adjacent blocks
is obtained by finding the entry in the table that has the minimum
number of bits. Repeating the foregoing process will allow us to find
the optimal breakpoint for a multi-block partition with an arbitrary
number of blocks.

4. EXPERIMENTAL RESULTS

We present preliminary test results for the performance evaluation
of the presented approaches. Following the same setup as in [4], the
empirical evaluation is performed with H.263 [2] using the reference
software TMN 3.0. H.263 deploys 8 x 8 DCT and run-level VLC
for the quantized transform coefficients. For multi-block partition
we refer to a 16 x 16 macroblock (MB), which consists of four 8 x 8
transform blocks.

The test video sequences contain three resolutions: QCIF, CIF,
and 4CIF, with two sequences for each resolution. Each test se-
quence has 300 frames with a frame rate of 30 frames per second
(fps). In every 15 frames 1 frame is enforced to be coded as an
INTRA-frame. For both INTRA and INTER-coded frames, a quan-
tization parameter (QP) of 6 is used. All VLC tables are Huffman
code tables constructed based on the measured statistics of symbols
and are generated separately for INTRA and INTER coding modes.

Tables 1-3 present the bit-rate results for the methods described
in Section 3.1 and Section 3.2, which are referred to as BPP (one
breakpoint per block) and BPM (one breakpoint per macroblock),
respectively. In the BPP method, we encode the optimal breakpoints
of the blocks in a macroblock in a joint manner to reduce the over-
head. The results are compared to those obtained by H.263 and by
HVLC with a constant breakpoint [4] (N = 20 in the presented
case) determined based on the quantization parameter. A minus per-
centage indicates the bit-rate reduction (performance improvement)
by HVLC over H.263, while a positive percentage indicates that the
bit rate is increased by HVLC. All the bit-rate results are in kbits/sec.

From the results, it can be seen that HVLC greatly outperforms
H.263, and the improvement is especially significant for blocks that
are coded in the INTRA mode. This is not difficult to understand,
as more nonzero coefficients result when a small quantization pa-
rameter is used and/or a block is coded as INTRA. The most sig-
nificant improvement is observed for the STEFAN and HARBOUR
sequences. In Table 2, for example, the INTRA bit rates of STEFAN
and HARBOUR are reduced by more than 15%. Those two sequences
are noticed to contain large motion, which results in more clustered
nonzero coefficients in the low-frequency region.

Using variable breakpoint further improves the coding perfor-
mance of HVLC considerably on both INTRA and INTER-coded
blocks, compared to the case of constant breakpoint. Between the
two approaches of variable breakpoint, using one optimal breakpoint
per macroblock outperforms the use of one optimal breakpoint per
block, as the former provides a better tradeoff of coding both the
coefficients and the breakpoints.

Table 1. Overall bit-rate results

Sequence H.263 Constant BPP BPM
Carphone | 268.56 -3.58% -4.25% -5.07%
Pingpong | 273.21 -5.97% -7.86% -7.59%
Foreman 970.34 -1.47% -2.18% -3.27%
Stefan 271326 | -9.32% | -10.12% | -10.64%
Soccer 4187.94 | -4.78% -5.01% -6.79%
Harbour 5657.80 | -5.13% -5.93% -7.77%
Table 2. Bit rates for INTRA-coded blocks
Sequence H.263 Constant BPP BPM
Carphone | 268.56 | -13.24% | -13.76% | -14.49%
Pingpong | 273.21 | -12.98% | -1531% | -15.17%
Foreman 970.34 -9.58% | -10.29% | -11.11%
Stefan 271326 | -17.48% | -19.16% | -19.60%
Soccer 4187.94 | -5.76% -6.43% -7.86%
Harbour 5657.80 | -15.11% | -16.34% | -17.45%
Table 3. Bit rates for INTER-coded blocks
Sequence H.263 Constant BPP BPM
Carphone | 268.56 -0.41% -1.13% | -1.97%
Pingpong | 273.21 -4.40% | -5.13% | -4.80%
Foreman 970.34 +0.98% | +0.30% | -0.91%
Stefan 2713.26 -7.89% -8.53% | -9.07%
Soccer 4187.94 -4.59% -4.74% | -6.59%
Harbour 5657.80 -2.92% -3.62% | -5.62%

5. CONCLUSIONS AND FUTURE WORK

The proposed use of variable breakpoint in HVLC allows the en-
coder to seek the best tradeoff in coding both coefficients and break-
points. Preliminary results showed that the proposed method im-
proves the efficiency of HVLC considerably compared to constant
breakpoint, while both of them outperform H.263 significantly. Ex-
tensive empirical study is ongoing to provide a thorough evaluation
of the performance.

Future research efforts will be devoted to the further improve-
ment of HVLC and its performance comparison with the 2D-VLC
schemes used in the newest video codec, e.g., H.264 [1] and China’s
AVS standard [5]. The improvement of HVLC is anticipated from
the introduction of context adaptivity in optimizing VLC tables and
the development of an effective method that determines the variable
breakpoint in a predictive fashion, eliminating the overhead of break-
point at a minor compensation of coding efficiency.
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