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ABSTRACT
Temporal or dynamic textures (DT’s) are video sequences

that are spatially repetitive and temporally stationary. DT’s

are temporal analogs of the well known spatial still image

texture. Examples of DT’s include moving water, foliage,

smoke, clouds, etc. We present a new DT model that can

efficiently compress DT sequences. Our proposed method

compactly represents the spatiotemporal properties of a DT

by modelling its varying Fourier phase content, which can be

shown to be the major determinant of both its dynamics and

appearance. This is possible because this method combines

both temporal and spatial properties in a compact spectral

framework. Making use of the benefits inherent to working in

the frequency domain, this model provides a significant im-

provement in DT compression, which can be used to improve

the performance of MPEG-2 encoding. We will present ex-

perimental evidence that validates this method for a variety of

complex sequences, while also comparing it to the most re-

cent DT representational model that is based on modelling a

DT as a linear dynamical system (LDS).

Index Terms— Dynamic texture, Phase, LDS, PCA

1. INTRODUCTION

Modelling of complex motion patterns in images remains un-

solved in computer vision, since it poses numerous problems

especially those related to reliable motion field estimation.

These problems become even more complex when consider-

ing non-rigid stochastic motions (e.g. DT’s). For example,

a scene of “translating” clouds conveys visually identifiable

global dynamics; however, the implosion and explosion of the

cloud segments during the motion result in very complicated

local dynamics. So, it is evident that efficient DT compres-

sion poses a serious challenge.

Methods ([1]) relying on optical flow are convenient, since

frame-to-frame estimation of the motion field has been exten-

sively studied and computationally efficient algorithms have

been developed. However, these methods only capture tempo-

ral characteristics of the DT and are prone to error especially

due to noise sensitivity and motion discontinuity. In fact, mo-

tion field estimation becomes a significantly harder task due

to the non-rigid nature and complex motion prevalent in DT’s.

In comparison to the previous techniques, fewer spatiotem-

poral models have been developed for DT’s. These include

the pioneering work by Nelson and Polana (1992) [2], the

spatio-temporal auto-regressive (STAR) by Szummer and Pi-

card [3], and multi-resolution analysis (MRA) trees by Bar-

Joseph et al. (2001) [4]. These methods impose restrictions

on the textures that can be modelled or are applied directly

on pixel intensities instead of more compact representations

(i.e. pixel groupings), thus, precluding feasible compression.

The most recent representational DT model was developed by

Doretto et al. (2003) [5], in which a linear time invariant dy-

namical model (LDS) is derived for the DT. This model has

been applied to DT compression and synthesis [5], recogni-

tion [6], and segmentation [7]. However, its modelling of the

intensity values of a DT as a stable, linear ARMA (1) pro-

cess leads to three main disadvantages: (i) the assumption of

second-order probabilistic stationarity, which does not hold

for numerous sequences (e.g. fire), (ii) the suboptimal rela-

tionship between the order of the LDS model and the extent of

temporal modelling possible (i.e. an LDS of order n does not

capture the most temporal variation in a DT among all mod-

els of order n), and (iii) significant computational expense,

since the model is applied directly to pixel intensities without

appropriately mitigating spatial redundancy.

Our method can be categorized as a spatiotemporal, image-

based model that uses the Fourier phase content of the DT

sequence to model both its appearance and global dynam-

ics. The rest of this paper is organized as follows: we justify

our choice of using phase in Section 2, present the details of

our phase based compression model in Section 3, and provide

experimental results that compare its performance to that of

LDS and a standard video compression scheme, MPEG-2.
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2. MOTIVATION

Following are the advantages of using the frequency domain

representation that alleviate certain problems encountered in

the spatial domain and motivate our proposed approach. (1)
Spatially global features are captured locally in the frequency

domain, since the change of the amplitude or phase of a cer-

tain frequency results in a global spatial variation. This makes

frequency space modelling more appropriate for modelling

global patterns such as those associated with DT appearance

and dynamics. (2) Computational complexity can be reduced

by exploiting the inherent conjugate symmetry of the Fourier

transform and the concentration of spectral image energy at

low frequencies. (3) Furthermore, computationally efficient

algorithms and specialized hardware are available for the com-

putation of the Fourier transform (e.g. FFT).

In what follows, we justify why the phase content of a DT

is a useful dual representation of its appearance and temporal

variations, and leads to a compact spatiotemporal model. (1)
In [8], Hayes proved that it is possible to reconstruct multi-

dimensional signals from their phase content alone, provided

that these signals do not have symmetric factors in their Z-

transforms. In fact, if a hybrid image is constructed from the

phase spectrum of a given image and the amplitude spectrum

of any other, we use the iterative algorithm, described in [9],

to reconstruct the original image from the hybrid image. This

process is called phase-only reconstruction. In each iteration,

two stages of processing are used: a 2D FFT (twice the size of

the input image) followed by a 2D inverse FFT (same size as

the input image). Figure 1 shows an example of this algorithm

applied to ocean and fire images. In the rest of this paper, we

assume that DT sequences enjoy this phase-only reconstruc-

tion property. This assumption is justified, since symmetric

Z-transform factors seldom occur in practice.

(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) is the phase spectrum image. (b) is the amplitude

spectrum image. (c) is the hybrid image. (d), (e), and (f) are

the images after 50, 100, and 250 iterations respectively.

(2) Complex stochastic motion, which characterizes a DT,

leads to complex stochastic variations in its phase content. We

empirically show that the temporal variations of phase values

do indeed capture most of the DT’s dynamical characteris-

tics and hence its global motion. Figure 2 shows that many

more principal components are required to represent 80% of

the variation in DT phase than to represent the same amount

in DT amplitude. Hence, we conclude that it is relevant to

represent only the phase spectrum of DT’s for the purpose of

compression.

Fig. 2. PCA components for DT phase and amplitude.

3. PHASE PCA COMPRESSION MODEL

For DT compression, we perform PCA on the DT feature vec-

tors, which are the vectorized half spectra of DT phase for

the frames in the DT sequence. Only half the phase spec-

trum is required due to the conjugate symmetry property of

the FFT. Here, we note that the DT frames are preprocessed

with an appropriately sized Hanning window to mitigate spec-

tral leakage. We will use the notation in (1) and (2) to denote

the PCA basis (A), the feature vectors (�Φ), their projections

in the PCA space (�x), and the mean feature vector (�Φm). For

an image of size MxN, the length of the feature vector is K =
MN

2 , so that the size of A is KxL, where L is the number of

principal components that have been selected to represent the

data. For complete representation, L = F, which is the number

of frames in the DT sequence.

�Φ = A�x + �Φm (1)

�x = AT (�Φ − �Φm) = [x1x2 · · ·xL]T (2)

Due to the symmetry of DT phase, considerable com-

pression is possible for each individual frame. We note here

that additional compression can be achieved by neglecting

frequencies with low energy, mainly in the high frequency

bands and by using the dimension reduction option inherent

to PCA. Below, we first present the compression rates that
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can be achieved by both Phase PCA and LDS in terms of the

number of principal components used for DT representation.

Then, we describe how the compression performance of our

method can be enhanced by forming a more compact PCA

space.

Basic Phase PCA (BPP) Compression: In this section, we

will present the overall compression rate that can be achieved

by reducing the dimensionality of the phase PCA space. So,

with this generic layout, we can compute the expected overall

compression rate (Rcomp) for an arbitrary DT sequence as in

(3). In fact, since L ≤ F and MN
2 � F, then the removal of a

PCA component will lead to significant data compression.

Rcomp = 1 − size(A) + size(�Φm) + # of PCA coefficients

MNF

= 1 −
[
L + 1
2F

+
L

MN

]
≈ 1 − L + 1

2F
(L � MN) (3)

The main factor dictating the extent of the data compres-

sion is L
F , the fraction of the PCA components used in the

representation. Also, note that even with a complete repre-

sentation (L = F ), the compression rate is about 50%. This

is due to the fact that only half the phase spectrum is used to

represent the DT, so the amplitude spectrum must be initially

determined by the iterative process mentioned in the context

of phase-only reconstruction.

Using LDS, we require two matrices (A and C) and the

initial state �x0 in order to reconstruct the DT. The dimension

of A is L′xL′ and that of C is 2KxL′, where L′ represents

the order of the LDS and K = MN
2 as defined before. So, the

overall compression rate in the case of a DT with F frames

is estimated as in (4). Note that under the same compression

rate, the LDS method requires approximately half the number

of principal components needed by BPP.

Rcomp = 1 − size(A) + size(C) + size(�x0)
MNF

= 1 − L′2 + 2KL′ + L′

MNF
≈ 1 − L′

F
(4)

Principal Difference Phase PCA (PDPP) Compression: In

this section, we describe an equivalent DT phase spectrum,

which forms a framework that allows for further DT compres-

sion. PDPP represents the phase changes in terms of the prin-

cipal angle of the difference between phase spectra of con-

secutive frames. We transform the BPP phase into PDPP for-

mat as follows. Each extracted phase spectrum is vectorized

(Φr
i , Φr+1

i ) and replaced by the sum of the previous phase

spectrum and the principal angle of their difference, between

Φr+1
i and Φr

i ∀r = 1, . . . , F ∀i = 1, . . . ,M ′ as illustrated in

Equation 5. In fact, this transformation expands the domain of

the original BPP space by 2π in each dimension. Hence, the

PDPP space can be spanned by fewer principal components,

giving rise to a more compact spatiotemporal model.

Φr+1
i ←− Φr

i + Γ(Φr+1
i − Φr

i ) (5)

Γ(x) = x + 2πk ∈ ] − π, π], for some k ∈ Z

In Figure 3, we show that for the same number of PCA

components (i.e. compression rate), PDPP can represent sig-

nificantly more variation in DT phase than the BPP method

described previously.

(a) (b)

Fig. 3. BPP vs. PDPP for two DT’s

4. EXPERIMENTAL RESULTS

In this section, we present experimental results that validate

the significance of our proposed method for DT compression

and compare its performance to that of LDS. Figure 4 ((a)-

(c)) compares the performance of LDS, BPP, and PDPP over

a range of compression rates, that are proportional to the num-

ber of principal components used. We note here that the com-

pression rate is computed from the number of principal com-

ponents required by LDS. It is evident from these plots that

BPP, in general, outperforms the LDS compression scheme,

mainly due to the fact that only half the phase spectrum is

modelled. Furthermore, PDPP renders a significant improve-

ment over BPP even at very low compression rates. In (d), we

show the temporal performance of each compression scheme

at a compression rate of 63%. We notice that both BPP and

PDPP tend to oscillate about a steady PSNR value, while LDS

performance decreases with time. This is due to the fact that

LDS produces a DT frame as a linear combination of the L′

chosen principal components, which are computed from L′

frames of the original DT and not all of them (i.e. F ).

Next, we compare PDPP compression to that of the MPEG-

2 standard, as portrayed in Figure 5. Here, we define the

compression rate for each case as the ratio of the size of the

MPEG-2 video to that of the original, uncompressed video.

From the above plots, we see that our method outperforms

MPEG-2 in all four DT’s. This improvement is primarily due

to the more compact representation of the temporal charac-

teristics of the DT inherent to PDPP. Since MPEG-2 requires

computation of motion fields and these estimates based on
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(a) (b)

(c) (d)

Fig. 4. LDS vs. BPP vs. PDPP in terms of compression rate

optical flow algorithms tend to degrade with the complexity

of the motion and the moving objects, MPEG-2 does not per-

form as well for the stochastic motion of non-rigid particle

objects prevalent in DT’s.

5. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel compression model for

DT’s, which represents both appearance and temporal infor-

mation based on DT phase content. This model was shown

to outperform the most recently used DT model in the lit-

erature. Moreover, we compared our model with MPEG-2

and showed that more compression is possible, when a more

compact representation of the temporal properties of the DT

is available. In the future, we would like to extend this model

to incorporate only high energy frequencies and examine how

information theoretic coding might improve its compression

performance.
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