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ABSTRACT 

 
This paper proposes a new full-reference objective metric for 
image quality assessment. The reference and distorted images are 
decomposed into a number of wavelet subbands, in which mean 
curvatures and perceived error of the wavelet coefficients of two 
images are computed and integrated to give overall quality index. 
Taking structural similarity and error visibility into account, the 
new method can achieve high consistency with subjective 
evaluation compared with other metrics. Experimental results have 
shown the effectiveness of the proposed metric.  
 
Index Terms— Image quality assessment, surface curvature, 
correlation, wavelet transform, error visibility. 
 
 

1. INTRODUCTION 
 

The quality of a digital image is affected by many factors. In 
practical image processing such as acquisition, compression, 
transmission and reconstruction, the visual quality of image is 
degraded in different degrees due to added noise or loss of image 
information. Usually, we compare original image and processed 
image to evaluate visual quality, namely full-reference quality 
assessment. Subjective evaluation is most accurate but it is time-
consuming and inconvenient. Objective evaluation methods which 
can automatically predicate perceived visual quality are desirable 
in most practical image processing systems such as image and 
video coding, dynamic monitoring of image quality. A number of 
objective image quality assessment methods have been proposed in 
past few years [1,2,3], in which many efforts have gone into the 
investigation of error sensitivity in spatial or frequency domain. 
However, psychological experiments have revealed that the human 
visual system (HVS) has more sensitivity to the structural 
information variation than to the error visibility. Obvious evidence 
is that human eyes are less sensitive to the small mean value shift 
of an image than to the distortions at image discontinuities. Based 
on this fact, Wang [4] proposed an image quality assessment 
method in which one of three factors measures the structural 
similarity using vector correlation. However, the spatial vector 
correlation cannot distinguish effectively the structural variation. 
This paper attempts to further exploit structural similarity in 
wavelet bands using differential geometric information because 
human eyes are able to deal with many geometric deformations 
quickly and accurately. In 3-D space, a surface model can represent 
image regions including flat surfaces, piecewise-smooth curved 
surfaces, edges and texture. We use surface curvature similarity 
between reference and distorted images as a factor to measure 
quality degradation. On the other hand, the frequency sensitivity of 

human perception for the wavelet coefficients is also taken into 
account to compute perceived errors that are integrated with the 
measure of curvature similarity to give overall image quality index. 
The effectiveness of the proposed method is verified through 
evaluating an image test database. The experimental results show 
that the new method can give a high correlation with the subjective 
scores in terms of prediction accuracy, monotonicity and 
consistence.     

This paper is organized as follows. In Section 2, wavelet 
decomposition and error sensitivity of wavelet coefficients are 
described. Section 3 gives brief description of surface curvature. 
Section 4 presents the proposed image quality assessment method. 
Experimental results and comparison with other metrics are given 
in Section 5. Finally, conclusions are drawn in Section 6.  
 

2. WAVELETS AND ERROR SENSITIVITY MODEL 
 
2.1. Wavelet Decomposition 

The wavelet transform is one of the most powerful techniques 
for image processing because of its similarities to the multiple 
channel models of the HVS. In recent years, image quality 
measures have used wavelet transform to perform spatial frequency 
decomposition [6][7].  

Figure 1 shows a two-dimensional frequency space in which 
four-level hierarchical wavelet subbands are obtained using DWT 
9/7 biorthogonal filters. In this space, there are total 13 subbands 
with one low-frequency subband and 12 AC subbands. Each level 
in the decomposition contains an LH band, an HL band, and an 
HH band.  

 
Figure 1.  Titling of the two-dimensional frequency space by four-
level hierarchical wavelet decomposition.  

2.2. Wavelet Frequency Error Sensitivity Model 

It has been found that human eyes have different sensitivities to 
the different frequency bands. In [5], the base detection thresholds 
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for the 9/7 DWT are measured using a noise added to the wavelet 
coefficients of a blank image of grey level 128. By fitting the data 
from the psychophysical experimental results in a mathematical 
model for a visually detectable noise threshold y, which is written 
as follows:  

( )2
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where, θ is the orientation of wavelet subband 
( LHHLHH ,,=θ ), f the spatial frequency (cycles/degree) 

determined by both the display resolution r , viewing distance and 

wavelet decomposition level λ . λ−= 2rf . 0,, fka and 
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constants which can be found in [5]. The wavelet error detection 
threshold is then given by  
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Where,
θλ ,A is the amplitude of the DWT 9/7 basis function 

corresponding to level λ and orientationθ .  
It is easy to verify from the equation (2) that the threshold for 

HH band is the highest while the threshold for LL band is the 
lowest. In other words, human eyes are more sensitive to the low 
frequency band than to the high frequency band. They are also 
dependent on orientation, being most sensitive in the horizontal 
and vertical directions and least sensitive at oblique angles. 

Taking into account of the masking effect [7], which is a 
function of the actual values of the wavelet coefficients, the 
detection threshold will elevate, which can be given by: 

( ) ( )( )vuCWTvuT ,,max, ,,, θλθλθλ =                 (3) 

Where, ( )vuC ,,θλ
denotes the wavelet coefficients and ( )vu,  

the coordinate. Due to elevated detection threshold the perceived 
error between the wavelet coefficients of original and distorted 

images denoted as ( )vuCo ,,θλ
 and ( )vuCd ,,θλ

will be reduced, 

which can be written as follows: 

( ) ( ) ( )( ) ( )vuTvuCvuCvuC do ,,,, ,,,, θλθλθλθλ −=Δ           (4) 

  
 

3. SURFACE CURVATURE  
 

A two-dimensional surface model can represent an image with 
smooth, edge and texture regions. We assume that the surface of an 
image can be specified as the height ( )vuI , above the support 

plane defined by two coordinates ( )vu, . A 3-D point on the 

surface is given by ( ) ( )( )vuIvuvuz ,,,, = . Let p be a point on the 

surface S. Consider all curves on S passing through the point p on 

the surface. Every such curve ic  has an associated curvature iK , 

among them the maximal and minimal values are known as the 
principal curvatures of the surface, which are denoted as 

maxκ and minκ . The product of maxκ and minκ is called 

Gaussian curvature at Sp ∈ , i.e., minmax κκ ⋅=K . The 

corresponding average is known as the mean curvature at Sp ∈ , 

( ) 2/minmax κκ +=H  [8]. The mean curvature H of a surface 

S is a measure of curvature that comes from differential geometry 
and that locally describes the curvature of an embedded surface. 

These two curvatures are given by: 

( )2
3

22

22

12

2

vu

uvvuuvvvuuvvuu

II

IIIIIIIII
H

++

−+++
=         (5) 

( )222

2

1 vu

uvvvuu

II

III
K

++

−
=                               (6) 

Where, uvuuvu IIII ,,,   and vvI are the partial derivatives of I . 

Surface curvature is complementary to edge information, which 
is a useful feature for scene analysis, feature extraction, and object 
recognition. It has been widely used for image segmentation and 
classification in computer vision. In image coding, visual quality is 
usually affected by the appearance of coding artifacts, such as 
blockiness, blurring and ringing effects. These coding artifacts 
deform the surface structure information and cause perceived 
noisiness. As an example, Fig. 2 shows the original and coded 
images with their curvature maps, from which we can see that the 
curvatures of distorted image at smooth regions such as face and 
background are quite different from original curvature at those 
points. Therefore by computing curvature similarity between two 
images can measure the degradation degree of the image quality.   

     
(a)                                (b) 

   
(c)                                (d) 

Fig. 2. (a) Original image; (b) JPEG coded image; (c) Mean 
curvature map of (a); (d) Mean curvature map of (b) 

 
4. THE PROPOSED IMAGE QUALITY METRIC 

 
In this section, a full-reference image quality metric is presented. 

Firstly, the reference image and its distorted version are 
decomposed into four-level structure with total 13 subbands using 
9/7 biorthogonal wavelet filter banks. In each subband, mean 
surface curvature maps are obtained using equation (5). The 
similarity between two images can be quantified in terms of the 
correlation function. We calculate the correlation coefficients 
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between two curvature maps of original and distorted images in the 
wavelet subbands using following formula:  
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Where, o
vuH , and d

vuH ,  denote mean curvatures of original image 

and its distorted image at point ( )vu, on the surface, respectively. 

oμ and dμ are the corresponding mean values of  o
vuH , and 

d
vuH ,  . 

Taking perceived error of wavelet coefficients and structural 
similarity into account, the overall quality measure using curvature 
similarity, namely QMCS in short, is obtained by summing the 
values of quality index in all the subbands, which is written as 
follows: 
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Where, 

θλ
μ

,CΔ
denotes the mean value of ( )vuC ,,θλΔ , 

4,,1 ⋅⋅⋅=λ , and θλ ,N  is the number of pixels at level λ and 

orientation θ . With this equation, we can obtain a quality score 
for each image. As the difference between two images tends 
towards zero 0, →Δ θλC , the correlation coefficient tends 

towards 1, the quality score approaches zero.   
 

5. EXPERIMENTAL RESULTS 
 
5.1. The Test Image Database 

We use the image database [10] developed by the Laboratory 
of Image and Video Engineering (LIVE), the University of Texas 
at Austin to test the performance of the proposed quality metric. 
The database is composed of total 344 images that were obtained 
by compressing twenty-nine high-resolution 24-bits/pixel RGB 
color images, including 175 JPEG compressed images and 169 
JPEG 2000 compressed images.  The compression bit rates were in 
the range of 0.150 to 3.336 and 0.028 to 3.150 bits/pixel, 
respectively. 

 In subjective evaluation procedure, observers are asked to 
provide their votes of perceived image quality on a continuous 
linear scale that was divided into five-grade description marked 
with “Bad”, “Poor”, “Fair”, “Good” and “Excellent”. Each JPEG 
and JPEG 2000 compressed image was viewed by 13~20 subjects 
and 25 subjects, respectively. The raw scores given by each subject 
were scaled to the full range (1~100). Finally, subjective Mean 
Opinion Score (MOS) value for each distorted image is obtained 
by taking the average of those rating values. 

5.2. Criteria for Metric Performance  

Following the performance evaluation methods adopted in the 
VQEG Phase-I test [9], we use three evaluation criteria to give 
quantitative measures on the performance of the proposed method. 
The first criterion is called non-linear correlation, which measures 
the prediction accuracy, i.e., the ability of a metric to predict 
subjective ratings. It is given by computing the normalized 
correlation coefficient between subjective MOS and objective 
rating that is fitted via a four-parameter cubic polynomial to the 
corresponding MOS, called non-linear regression analysis. The 
second criterion is the Spearman rank-order correlation, which 
measures the prediction monotonicity of a model, i.e., whether the 
increases or decreases in one variable are associated with the 
variation of other variable. The third one is outlier ratio, which 
calculates the percentage of the number of predictions outside the 
range of ± 2 times of the standard deviations, which is used as a 
measure of prediction consistency. Besides, we also use Mean 
Absolute Error (MAE) and Root Mean Square Error (RMSE) as 
the performance indexes for the purpose of comparison with other 
quality assessment metrics. 

5.3. Experimental Results and Performance Comparison 

For each image in the database, we compute its objective 
quality score using the proposed method. Then performance 
indexes including non-linear correlation, Spearman rank-order 
correlation, outlier ratio, MAE and RMSE are calculated. In order 
to compare the proposed quality metric with other competitive 
metrics on the same database, three main quality assessment 
methods have been tested, which are named PSNR, Sarnoff [11], 
MSSIM [4]. The experimental results are listed in Table I.  Figs. 3-
6 draw the scatter plots of MOS versus PSNR, Sarnoff, MSSIM 
and proposed QMCS, respectively. From the experimental results, 
we can see that a significant improvement for the image quality 
measure in terms of five performance evaluation indexes has been 
achieved in comparison with MSSIM method that used spatial 
vector correlation as the measure of structural information. It 
should be pointed out that the data in Table I and scatter plots 
(Figs.3-5) for PSNR, Sarnoff, and MSSIM models are from [4] for 
the purpose of comparison.  

Table I. Performance comparison of image quality assessment 
models; PCC: correlation coefficient; MAE: mean absolute error; 
RMSE: root-mean-square error; OR: outlier ratio; SROCC: 
spearman rank-order correlation coefficient 

 Non-linear Regression Rank-
order 

Model PCC MAE RMSE OR SROCC 
PSNR 0.905 6.53 8.45 0.157 0.901 
Sarnoff 0.956 4.66 5.81 0.064 0.947 
MSSIM 0.967 3.95 5.06 0.041 0.963 
QMCS 0.971 3.81 4.75 0.012 0.966 

 
6. CONCLUSIONS 

 
In this paper, we have presented a new method for image quality 

evaluation. From the view point of comparing structural 
information variation of a reference image and distorted image, we 
used mean curvature similarity combined with perceived error of 
the wavelet coefficients. Experiments on JPEG and JPEG 2000 
compressed image database have shown that the new quality metric 
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can obtain a high correlation with subjective evaluation scores in 
terms of prediction accuracy, monotonicity and consistency. 

 

 

 
Fig. 3. Scatter plot of MOS vs. PSNR  

 

 
Fig. 4.  Scatter plot of MOS vs. Sarnoff  

 

 

Fig. 5.  Scatter plot of MOS vs. MSSIM  
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Fig. 6. Scatter plot of MOS vs. QMCS  
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