
A NO-REFERENCE OBJECTIVE IMAGE SHARPNESS METRIC BASED ON
JUST-NOTICEABLE BLUR AND PROBABILITY SUMMATION

Rony Ferzli and Lina J. Karam

Department of Electrical Engineering
Arizona State University
Tempe, AZ 85287-5706

rferzli@ieee.org, karam@asu.edu

ABSTRACT

This work presents a perceptual-based no-reference objective image
sharpness/blurriness metric by integrating the concept of Just No-
ticeable Blur (JNB) into a probability summation model. Unlike ex-
isting objective no-reference image sharpness/blurriness metrics, the
proposed metric is able to predict the relative amount of blurriness
in images with different content. Results are provided to illustrate
the performance of the proposed perceptual-based sharpness met-
ric. These results show that the proposed sharpness metric correlates
well with the perceived sharpness.

Index Terms— Image quality, Image Assessment, Perception,
HVS, No-reference, Objective, Sharpness Metric.

1. INTRODUCTION

Measuring the quality of images is desirable in various applications
such as video compression and image enhancement. Researchers
have had to resort to subjective viewing experiments in order to ob-
tain reliable ratings for the quality of digital images or video. While
these tests are the best way to measure ’true’ perceived quality, they
are complex, time-consuming and consequently expensive. Hence,
they are often impractical or not feasible at all, for example when
real-time online quality monitoring of several video channels is de-
sired. It is desirable to design objective metrics that can predict ac-
curately the quality of the image/video and can be embedded in real-
time systems at low cost. Objective full-reference metrics require the
original image for calculation while the no-reference ones are inde-
pendent of the original image. Different types of impairments may
exist in an image; for example, image encoders introduce mostly
blockiness, blurriness and ringing artifacts while noise is present due
to sensor and when transmitting over communication channels. This
paper focuses on no-reference image sharpness/blurriness metrics
due to their importance in image and video compression, enhance-
ment algorithms, as well as in biomedical applications. Sharpness
metrics rely on the fact that edges are steeper for sharp images while
they tend to be smooth for blurred images.

Several no-reference objective sharpness metrics were proposed
in the literature and are analyzed in [1]. Most of previously pro-
posed objective no-reference metrics neglect the important influence
of image content and viewing conditions on the actual visibility of
artifacts. Therefore, their predictions often do not agree well with
actual perceived quality [1]. So, there is a need for reliable vision
models to be incorporated into image and video processing algo-
rithms. The improvement in quality that can be achieved using an
approach that exploits the Human Visual System (HVS) character-

istics can be significant in a variety of image and video processing
applications. Nevertheless, developed perceptually-motivated sharp-
ness metrics [2] concentrate on predicting the quality of images hav-
ing same content and fail when exposed to images having different
content [3]. In this paper, the evaluation of quality for images with
various contents, through the evaluation of sharpness, is investigated
and an HVS-based metric is proposed based on the concepts of Just
Noticeable Blur (JNB) and probability summation over space.

This paper is organized as follows. Section 2 gives a brief
overview of available objective no-reference sharpness metrics and
the behavior of these metrics when applied to images with different
content. Section 3 presents a JNB-based perceptual sharpness met-
ric based on the probability of summation over space. Performance
results are presented in Section 4. A conclusion is given in Section 5.

2. BEHAVIOR OF EXISTING SHARPNESS METRICS

A detailed overview of different objective no-reference sharpness
metrics was given by the authors in [1]. Table 1 summarizes these
methods along with a brief description. These metrics are applied
to a testing set consisting of four 512 × 512 different images hav-
ing different content and blurred using a 7 × 7 Gaussian filter with
a standard deviation equals to 0.8, 1.6, 2.0 and 2.4, respectively,
as shown in Fig. 1. The idea is to test the metrics on a set of im-
ages having different characteristics in order to check if these met-
rics can reliably predict the relative sharpness in images with dif-
ferent content. For example, the ’Peppers’ image has large smooth
regions while the ’Houses’ image contains a lot of edges. Texture
is found abundantly in the ’Man’ image. The ’Fishingboat’ image
contains both smooth and high variation areas. The existing metrics
(Table 1) were applied to the testing set of Fig. 1 in the following
order: FishingBoat (σblur = 0.8), Man (σblur = 1.6), Peppers
(σblur = 2.0), and Houses (σblur = 2.4). The desired response
should be a monotonic decreasing curve for the corresponding sharp-
ness values since increasing blurriness should result in a lower value
of the considered sharpness metric (in the case of a blurriness metric,
the inverse of the metric value was used to obtain a measure of sharp-
ness). Simulation results [3] indicate that none of the listed metrics
can predict correctly the perceived sharpness. In [3], the authors pro-
posed a perceptually-motivated approach for predicting the relative
sharpness of images with different content. However, in [3], de-
rived perceptual weights were applied in a heuristic manner. In this
work, a perceptual-based no-reference image sharpness assessment
method is proposed and justified based on probability summation
over space [4, 5], which gives a solid basis for the adopted approach.
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(a) ’Fishingboat’ (σblur = 0.8) (b) ’Man’ image (σblur = 1.6) (c) ’Peppers’ image (σblur = 2.0) (d)’Houses’ image (σblur = 2.4)

Fig. 1. Test images with different content.

Table 1. Existing objective no-reference sharpness metrics.
Noise Immune Metric (NIS) [1]: relies on the Lipschitz regularity property
separating the signal singularities from the noise singularities, by applying
the dyadic wavelet transform and then measuring the sharpness using the
perceptual blur metric [2].
Variance metric [6]: calculates the variance of the whole image.
Autocorrelation-based metric [7]: derived from the auto-correlation func-
tion which uses the difference between auto-correlation values at two dif-
ferent distances along the horizontal and vertical directions, respectively.
Derivative-based metrics [8]: include the first-order (gradient) and second-
order (Laplacian) derivatives metrics; these metrics act as a high-pass filter
in the frequency domain.
Perceptual blur metric [2]: the overall metric is calculated as the average of
the edge widths or the local blur values over all edges.
Frequency threshold metric [9]: computes the summation of all frequency
component magnitudes above a manually selected threshold.
Kurtosis metric [10, 11]: uses the statistical kurtosis to measure of the
peakedness or flatness of a distribution in frequency domain.
Histogram threshold metric [9]: defined as the weighted sum of the his-
togram bin values above a certain threshold ’T’.
Histogram entropy based metric [12]: the probabilities are calculated by
normalizing the obtained histogram, and the entropy is computed.
Histogram frequency based metric [13]: based on the occurrence histogram
of non-zero DCT coefficients throughout all 8×8 blocks of the image.

3. PROPOSED SHARPNESS METRIC BASED ON
PROBABILITY SUMMATION

This section presents the proposed no-reference objective sharpness
metric integrating the concept of Just Noticeable Blur (JNB) into a
probability summation model.

3.1. Subjective Blur Detection Experiments

In order to study the response of the HVS to blurriness and sharpness
in images, subjective experiments were performed to obtain results
in relation to blur perception and just-noticeable blurs (JNBs). The
concept of JNB was previously introduced by the authors in [3]. The
blurriness is introduced using a 7×7 Gaussian lowpass filter mask.
The conducted experiments make use of a foreground square with
uniform intensity IF over a uniform background with intensity IB .
For a given contrast ratio, the foreground square is blurred using a
guassian mask with a standard deviation equals to {0.2, 0.3, 0.35, 0.4,
0.45, 0.5, 0.55, 0.65, 0.8, 1.0}. The standard deviation values are
selected based on previous experiments conducted by the authors
in [3] where the subjects can increase the Gaussian mask variance
until detecting blurriness labeled as JNB. In this work, for a given

contrast, which should be greater than the Just-Noticeable-Distortion
(JND) threshold, the 10 levels of blurriness are displayed randomly
to the human observer one after the other. In contrast to the blur de-
tection experiments previously conducted by the authors in [3], in the
experiments reported here, the subject cannot control the amount of
blurriness. Once exposed with a blurriness level, the subject should
select one of two answers: ’Detected’ or ’Not Detected’. Each time
an answer is received from the subject, another level of blurriness
is displayed. The same experiment is repeated for different contrast
ratios. Overall, the subject is exposed to 20 different contrast ratios
starting at 10 and reaching 200 using a step size of 10. For each con-
trast ratio, the corresponding collected data is used to compute the
σJNB threshold at the considered contrast. This is done by comput-
ing the normalized histogram of the subject responses and selecting
the blur detection point corresponding to a probability of detection of
63% [5]. For each blur detection threshold σJNB , the corresponding
edge width is measured and denoted as wJNB .

3.2. Perceptual Blur Detection Model Based on Probability Sum-
mation

While the derived JNB thresholds (Section 3.1) provide a localized
measure of the blur threshold for a single edge at a given local con-
trast, a perceptual sharpness metric that also accounts for spatial
summation of individual blur distortions is needed. In this work, the
probability summation model is adopted [5]. The proposed probabil-
ity summation model considers a set of independent detectors, one
at each edge location ei. The probability P (ei) of detecting a blur
distortion is the probability that a detector at edge pixel ’i’ will sig-
nal the occurrence of a blur distortion. P (ei) is determined by the
psychometric function, which is modeled as an exponential having
the following form [5]:

P (ei) = 1 − exp

�
−

���� w(ei)

wJNB(ei)

����
β
�

(1)

where w(ei) is the measured width of the edge ei and wJNB(ei) is
the JNB width (Section 3.1) which depends on the local contrast in
the neighborhood of edge ei. The value of β is chosen to increase
the correspondence of (1) with the experimentally determined psy-
chometric function for a given type of distortion (blur in our case).
From (1), note that a probability of detection of 63% is obtained
when the measured width is equal to wJNB as desired.

A less localized probability of error detection can be computed
by adopting the probability summation hypothesis which pools the
localized detection probabilities over a region of interest P (ei) over
a region of interest R [5]. The probability summation hypothesis
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Fig. 2. Flowchart illustrating the computation of the proposed perceptual-based sharpness metric.

is based on the following two assumptions: 1) a blur distortion is
detected if and only if at least one detector in R senses the presence
of a blur distortion, and 2) the probabilities of detection P (ei) are
independent. The probability of detecting blur in a region R is then
given by:

Pblur(R) = 1 −
�

ei∈R

(1 − P (ei)) (2)

Substituting (1) into (2) yields:

Pblur(R) = 1 − exp (−Dβ

(R)) (3)

where

D(R) =

��
ei∈R

���� w(ei)

wJNB(ei)

����
β
� 1

β

(4)

In (4), D(R) takes the form of a Minkowski metric with exponent β.
From (3), it is evident that a lower D(R) results in a lower probability
of blur detection Pblur(R). So, D(R) can be used to indicate the
amount of perceived blurriness in the considered region R.

In the human visual system, highest visual acuity is limited to the
size of the foveal region, which covers approximately 2% of visual
angle. In this work, the foveal region is approximated by 8 × 8
image blocks. Smooth blocks are excluded as they do not contribute
to blur perception. For this purpose, a Sobel edge detector is run
first on each block, and each block is categorized as a smooth block
or an edge block based on the number of edge pixels. In order to
account for the maximum perceived blur distortion within a non-
smooth block Rb, a β = ∞ is used in (4) obtaining a maximum
probability of blur detection in the block region Rb as follows:

DRb
= max

ei∈Rb

����� w(ei)

wJNB

����
�

(5)

where wJNB is the JNB width corresponding to the contrast of the
considered block region Rb and is obtained as described in Sec-
tion 3.1.

The perceived blur distortion measure D for the whole image
corresponds to the probability of detecting a blur distortion over all
possible block regions Rb and is obtained by using a Minkowski
metric as follows:

D =

�
	�

Rb

|DRb
|β



�

1

β

(6)

In (6), β = 4 was found to correlate well with subjective tests. The
resulting blur distortion measure D of (6), normalized by the image
size, is adopted as the proposed no-reference objective blurriness
metric. The proposed no-reference objective sharpness metric is thus
taken to be 1/D. A block diagram summarizing the computation of
the proposed sharpness metric is given in Fig. 2.

4. SIMULATION RESULTS

In this section, results are presented to illustrate the performance
of the proposed JNB-based sharpness metric. Fig. 3(a) illustrates
the performance of the proposed perceptual-based sharpness metric
when applied to the testing set of Fig. 1. For comparison, Fig. 3(b)
shows the performance results when the popular non-perceptually
weighted edge-based sharpness metric of Marziliano et al. [2] is ap-
plied to the same testing set. Note that the sharpness metric of [2]
is also referred to as the perceptual blur metric in the literature but
it does not incorporate any perceptual weighting and does not incor-
porate visual subjective test data. As the blurriness increases, the
sharpness metric should decrease monotonically. From Fig. 3, it can
be seen that the proposed perceptual JNB-based sharpness metric is
decreasing as expected, while the perceptual blur metric of [2] is fail-
ing. Also, as indicated in Section 2, all the other existing sharpness
metric (Table 1) fail to predict correctly the increase in blurriness in
images with different content.

In order to further validate the proposed JNB-based objective
no-reference sharpness metric, subjective tests were conducted for
assessing the blur in different images. The subjective blur assess-
ment were conducted as follows: 18 images are extracted from the
LIVE database [14]. Each image is presented 4 times giving a total
of 72 images. Note that the blurred images in the database are gen-
erated using a circular-symmetric 2-D Gaussian kernel of standard
deviation ranging from 0 to 15. The images are randomly displayed;
for each displayed image, the subject is asked to rate the quality
of the image in terms of perceived blurriness using a scale from 1
to 5 correpsonding to “Very annoying”, “Annoying”’, “Slightly An-
noying”, “Perceptible but not annoying”, and “Imperceptible”, re-
spectively. Nine subjects took the test and the Mean Opinion Score
(MOS) was computed and compared to the proposed sharpness met-
ric. To measure how well the proposed metric values correlate with
the subjective MOS values, the Pearson coefficient [15] was com-
puted. According to [15], a Pearson coefficient value higher than
0.75 indicates well correlated data, while a value higher than 0.9
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(a) Performance of proposed metric.
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(b)Performance of perceptual blur metric of [2].

Fig. 3. Performance of the proposed perceptual-based sharpness
metric and the perceptual blur metric of [2] when applied to the im-
age testing set of Fig. 1.

shows a very strong relation. In our case, the computed Pearson co-
efficient value is 0.908 showing that the proposed metric is strongly
correlated with the subjective MOS values.

5. CONCLUSION

Simulation results showed that none of the existing no-reference ob-
jective sharpness metrics will give satisfying results when applied
to images with different scenes. A perceptual sharpness metric is
derived based on measured Just-Noticeable Blurs (JNBs) and proba-
bility summation over space, which takes into account the response
of the HVS to sharpness at different contrast levels. Combining
the derived model with local image features, it is shown that the
proposed metric is able to successfully predict the relative sharp-
ness/blurriness of images, including those with different scenes. Fu-
ture directions include investigating the effect of color on sharpness
perception and incorporating the JNB concept into the noise-immune
sharpness metric [1] .
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