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ABSTRACT
A set of three fixed basis functions is proposed for the linear

projection of hyperspectral images into a set of three images

that can be displayed on the red, green, and blue channels

of a standard display. The proposed basis functions were de-

signed to meet specific criteria for maximizing interpretability

of the visualization and correspondence of the perceived visu-

alization to the original hyperspectral data. The constraints of

the standardized display-device colorspace sRGB were taken

into account, and the design was optimized using the percep-

tual colorspace CIELab. This work improves upon a previous

fixed basis function method, the Stretched CMF basis func-

tions. A method for taking into account the different SNR of

each frequency band is also proposed. Example visualizations

are shown for AVIRIS hyperspectral imagery.

Index Terms— hyperspectral, color, CIELab, sRGB

1. INTRODUCTION

A hyperspectral image is a set of images where each com-

ponent image corresponds to a particular wavelength band,

just as a color image is a set of three images corresponding

to red, green, and blue wavelengths. In this paper, the prob-

lem of displaying a hyperspectral image on a standard color

monitor is considered. The approach is to reduce the dimen-

sionality of the hyperspectral image by linearly projecting the

hyperspectral image onto three basis functions: a red basis

function, a green basis function, and a blue basis function.

That is, given a hyperspectral image with N component im-

ages, and N -component discrete basis functions r, g, and b,

then a normalized N -dimensional hyperspectral pixel xij is

projected down to scalar color components Rij , Gij , Bij :

Rij = rT xij , Gij = gT xij , Bij = bT xij .

Then, the three projected images R, G, and B are displayed

as the red, green, and blue components of one color image.

As a final step, the image is gamma corrected by converting it

to the nonlinear sRGB color space.

Linear projection is analogous to how human vision maps

the continuous visible spectrum of light onto the L, M, and S

cones, corresponding roughly to the color sensations of red,

green, and blue. In human vision the basis functions are

(probabilistic) spectral sensitivities of each cone type. Hu-

man vision is an effective way to view the world, and mo-

tivates linear projections of hyperspectral images into color

images. Humans can quickly interpret color images, includ-

ing fast searching, useful comparisons, and shape and object

recognition.

The main disadvantage to mapping hyperspectral image

pixels to display colors is the loss of information. Given an

hyperspectral image with N component images, a N → 3
linear projection to one RGB color image is a many-to-one

mapping such that some output RGB color values could cor-

respond to many different N -dimensional hyperspectral pix-

els. Human color vision suffers from the same problem; two

different visible spectra can cause the same color sensation.

However, such metameric spectra from different objects can

usually be distinguished by context, shapes formed in the im-

age, and other visual clues. In fact, a common method for dis-

playing hyperspectral images is to pick three spectral bands of

the hyperspectral image and map those three bands’ images to

the R, G, and B components.

Another common approach to displaying hyperspectral im-

ages is to calculate the first three principal component analy-

sis (PCA) basis functions for the hyperspectral dataset, project

the hyperspectral image onto the PCA basis functions, and

then map the resulting three PCA images to the RGB or HSV

colorspace and display the final color image [1, 2]. Using

PCA for image display has a number of disadvantages (see [3]

for more detail on these points): the visualization can be diffi-

cult to interpret because the colors change drastically depend-

ing on the data, color differences do not correlate strongly

with data differences, orthogonal principal components are

usually mapped to the non-orthogonal RGB display channels,

the colors may be distractingly pre-attentive, the standard con-

trast stretch used in PCA display leads to simultaneous con-

trast problems, and the computational complexity is high. Us-

ing other adaptive statistical approaches such as MNF and

ICA for display has similar disadvantages.

In this paper we consider the design of projection basis
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functions such that the resulting color image provides useful,

interpretable information to the human viewer about the orig-

inal hyperspectral dataset. First, design goals for this visu-

alization problem are discussed in Section 2. Based on the

presented design goals, a new set of linear basis functions

is proposed and analyzed in Section 3. In Section 4, a new

method is given to adapt a basis to the data signal-to-noise

(SNR) ratio.

2. DESIGN GOALS

In this section we consider some design goals for fusing a set

of images to preserve information and enable interpretability.

1. Summarization: The visualization accurately summa-

rizes the original data.

2. Consistency of Visualization: Hyperspectral data are

projected in a sufficiently consistent way such that col-

ors have consistent, interpretable meanings.

3. Computational ease: The computation is fast enough

to enable real-time usage or interactivity.

4. System-optimized design: The design is optimized for

characteristics of the display and the human visual sys-

tem.

5. Natural palette: The visualization creates a natural

palette of colors, producing pre-attentive colors (such

as bright saturated colors) only when informative.

6. Equal-energy white point: A data vector with the same

value for each component appears gray.

7. Equal Luma Data Components: Define a Kronecker

data point to be a vector with all component values

zero, except one component, which has value 1. If

all Kronecker data points map to colors with the same

CIELab luminance value, then the visualization has equal
luma data components. In effect, this means that every

data component (i.e., every spectral band) contributes

equally to the perceived brightness of the visualization.

8. Informative Hue Differences: If the hue difference

between any two same-length Kronecker data points

is an increasing function of the distance between their

non-zero components the visualization has informative

hue differences.

3. FIXED BASIS FUNCTION SETS

We briefly review a previously proposed fixed basis function

set, called the Stretched CMF basis (where CMF stands for

color matching function), and then propose an improved de-

sign, the Constant-Luma Border basis. The bases can be sam-

pled for an arbitrary number of data components N to be used

with any hyperspectral imagery. Code to implement these ba-

sis function sets in Matlab is available at

idl.ee.washington.edu/projects.php.

3.1. Stretched CMF

In previous work we proposed a basis inspired by human vi-

sion to reduce the dimensionality of hyperspectral images for

display [3, 4]. The proposed Stretched CMF basis synthe-

sized what the human eye would see if its range of perceived

wavelengths were stretched to cover the hyperspectral range

of interest. Figure 1 shows the Stretched CMF basis func-

tions, and the rendered colors of Kronecker data pixels (data

pixels where all components are zero except for one compo-

nent) projected onto the basis. Some aspects of the Stretched

CMF basis make it suboptimal for general use. First, the lu-

minance and saturation of the middle data components are

emphasized. Second, the change of hue across components

is uneven, as shown by the colorbar of Figure 1 (top), the

displayed color of Kronecker data points at each data com-

ponent. Third, the Stretched CMF basis can produce RGB

colors that are outside of the sRGB gamut, which must be

clipped in order to be displayed on a standard sRGB monitor.

3.2. Constant-Luma Border

The Constant-Luma Border basis was designed for the goal

of equal luma data components, while balancing the goal of

equal chromatic differences with making the best use of the

sRGB gamut. Kronecker data points are rendered in colors

that follow the curve defined by linear mixtures (in linear

sRGB space) between three pseudo-primaries that lie in the

L = 50 Luma plane. Figure 2 shows the Constant-Luma

Border basis functions, and the rendered colors of Kronecker

data pixels (data pixels where all components are zero except

for one component) projected onto the basis. The curve pro-

gresses from blue (R=0.122, G=0.122, B=1) to green (R=0,

G=0.256, B=0) to red (R=0.866, G=0, B=0). Points along the

curve are sampled at approximately constant ΔE.

The basis functions do not sum to the same value, so the

equal energy white point goal is not well-met: data points

with the maximum value for each component are rendered as

off-white.

3.3. Data scaling

In order to fit the available gamut, it is necessary to scale the

hyperspectral data in a consistent way. A raw data vector z is

normalized as follows to create the normalized vector x that

is then linearly projected: x[n] = 1
k (z[n] − m̂inz)/(m̂axz −

m̂inz), where k = max(
∑N

n=1 r[n],
∑N

n=1 g[n],
∑N

n=1 b[n])
and m̂inz and m̂axz are the smallest and largest expected val-

ues of the data.
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Fig. 1. Stretched CMF basis for N = 30 components.

3.4. Interpreting the color

Figures 3 and 4 are examples of image sets projected with the

proposed bases. Each basis enables the following consistent

interpretation of colors to some extent:

Luminance: Luminance corresponds to the sum of the

data vector components.

Hue: Hue indicates which data components are strongest.

The colorbars, which show the rendered colors of unnormal-

ized Kronecker data points, act as a legend that tells the viewer

what components are strongest given a particular hue in the

rendered image.

Saturation: A saturated color response corresponds to

relatively few strong neighboring components. Similarly, a

desaturated (gray) color indicates that all data components are

equally strong.

4. ADAPTING BASES TO DATA SNR

In some sensor systems the signal to noise ratio (SNR) varies

significantly over the data components. For hyperspectral im-

ages captured by NASA’s Airborne Visible/Infrared Imaging

Spectrometer (AVIRIS) the SNR is affected by atmospheric

scattering and the sensitivity of the component spectrometers

of the system. Often, bands with low SNR are ignored as they

contain little usable signal.

We developed a method to adapt a basis for varying SNR.

Given original basis functions r, g, b, the reweighted basis

functions are: Ar, Ag, Ab, where A is a reweighting matrix.
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Fig. 2. Constant-Luma Border basis for N = 30 components

The matrix A is designed to transfer weight from compo-

nents with low SNR to components with high SNR, so that

high SNR components appear brighter and have greater hue

changes between them. Elements of A are initialized to zero.

Then, starting from the top left and proceeding row-by-row,

each element is assigned the maximum value subject to the

following constraints:

1. The sum of the ith row of A is equal to the SNR of the

ith component.

2. The sum of each column of A is 1.

The following example shows how these constraints are satis-

fied for a given SNR vector (normalized to have a mean value

of 1):

SNR =

⎡
⎢⎢⎣

.3

.1
2.3
1.3

⎤
⎥⎥⎦ , then A =

⎡
⎢⎢⎣

.3 0 0 0

.1 0 0 0

.6 1 .7 0
0 0 .3 1

⎤
⎥⎥⎦ .

The SNR-optimized basis functions have the same total

sum as without the SNR optimization. Figure 4 shows an

example of the difference between ignoring low-SNR bands

and using an SNR-optimized basis (note that images were de-

signed to be viewed on a standard sRGB display).

5. DISCUSSION

Using human vision as a model for a dimensionality-reduction

system, in this paper we proposed a new solution for the lossy

visualization of a hyperspectral image that is interpretable by

humans in terms of perceived luminance, saturation, and hue.
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Fig. 3. AVIRIS hyperspectral visualizations; bands with poor

SNR are not included in the projections. Top: Projected us-

ing PCA basis, top and bottom 2% of pixels saturated for each

color component, with no gamma correction. Bottom: Pro-

jected using Stretched CMF basis.

The proposed Constant-Luma border basis is optimized for

the standard sRGB color monitor and for the characteristics

of the human visual system, assuming all data components

are equally important/noise-free. We proposed a method for

adjusting any linear projection basis for the common case that

the SNR varies for different data components. This SNR-

adjustment method could also be used to adjust for differences

in importance of different data components.

The proposed Constant-Luma border basis dimensionality-

reduction technique and SNR-adaption technique can be ap-

plied to the visualization of other image sets. In particular,

image sets where there are strong correlations between the

components of the multi-dimensional pixels will work well.

The value of this kind of visualization for a particular task

would need to be evaluated by a user study.
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