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ABSTRACT

Target detection in hyperspectral images (HSI) in one of the

most common applications. But the classical detection algo-

rithms are sensitive to noise. It is crucial to well restore the

spectral signature in order to decrease the noise dependence

of the detection algorithm. In this paper, we propose a restora-

tion method which takes advantage of spatial and spectral in-

formation in order to estimate the spectral signature without

impair the discriminate power. Our method is based on tensor

decomposition where all ways are processed simultaneously.

By considering the cross-dependency of spatial and spectral

information for the filtering, we improve the probability of

detection. Our optimization criterion is the minimization of

the mean square error between the estimated and the desired

tensors. This minimization leads to estimate the n-mode filter

for each way and are jointly estimated by using an Alternat-

ing Least Squares (ALS) algorithm. Comparative studies with

the classical bidimensional restoration methods show that our

algorithm exhibits better detection probability in noisy situa-

tion. Indeed, the detection probability obtained after our al-

gorithm is higher than 0.7 until a signal to noise ratio equal to

-3 dB.

Index Terms— Detection, tensor signal, hyperspectral im-

ages, multilinear algebra, multiway filtering.

1. INTRODUCTION

The noise corrupting HSI depends not only on the perfor-

mance of sensors but also on the conditions during the data

acquisition including illumination and atmospheric effects.

Under such conditions, noise reduction (NR) is a necessary

preprocessing step to increase the SNR in order to improve

the detection or classification processing by both decreasing

the target spectral variability and spatially smoothing homo-

geneous areas. The HSI is a multiway and multicomponent

data, represented by a datacube with several hundreds of spec-

tral channels. Filtering this multiway data is far from being

trivial. A basic restoration scheme processes all channels sep-

arately, considering each one as an independent signal. This

NR method does not take advantage of inter-channel rela-

tionships which is one of the principal HSI characteristics.

In order to make use of this inter-channel information, Hunt

and Kubler propose in [1] a Karhunen-Loeve domain orthog-

onalization that decorrelates the channels. Actually, the most

common NR method when dealing with multiway data is to

perform an hybrid filter which consists first in making a prin-

cipal component analysis (PCA) transform and then in remov-

ing noise with one independent spatial restoration for each

decorrelated channel. But those classical techniques consist

in splitting the data set into matrices or vectors and operate in

the spatial and spectral domains independently. The splitting

reduces considerably the information quantity related to the

whole data : the possibility of studying the relations between

components of different ways is lost.

In this paper, data are modelled as a tensor where each

mode (way) is associated with a physical quantity. The orig-

inality of this model is to keep the intact multi-way structure

during the processing and to jointly process the data spatially

and spectrally. Tensor models are used in a large range of

fields such as data analysis or signal and color image pro-

cessing [2, 3]. These methods are based on multilinear al-

gebra and on Tucker3 tensor decomposition [4]. Hence, we

adapted a tensor decomposition based filtering for the HSI

tensor model. In addition to [3] we propose a detection crite-

rion to estimate the signal subspace dimension of each mode.

The aim of this paper is to illustrate the improvement of target

detection when spatial and spectral information are taken into

account simultaneously during restoration.

The rest of the paper is organized as follows. Section 2 in-

troduces the tensor formulation of the classical noise-removing

problem. Section 3 summarizes the concept of multiway fil-

tering. Section 4 presents and discusses some comparative

detection results. Finally, concluding remarks are given in

Section 5.

2. HSI TENSOR MODEL

2.1. Tensor modelling

HSI can be modelled by a three-order tensor X ∈ R
I1×I2×I3

where I1 is the number of rows, I2 the number of columns,

and I3 the number of spectral channels. Each way of the ten-

sor is called n-mode where n refers to the nth index. Let us
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define E(n), the n-mode vector space of dimension In, asso-

ciated with the n-mode of tensor X .

Unfolding a tensor X along a specific vector space E(n)

allows to study the data properties in a given n-mode. An

illustration of the n-mode unfolding of a tensor, denoted by

Xn is represented in Fig. 1. In each unfolding matrix of the

tensor, the whole information is present, data are rearranged

along each n-mode vector space E(n).

Fig. 1. n-mode unfolding of tensor X .

This modelling naturally implies the use of multilinear

algebraic tools and especially tensor decomposition and ap-

proximation methods. A commonly used is the Tucker3 [4]

decomposition, which is illustrated in Fig. 2 and expressed

for a 3-order tensor by :

X = C ×1 U(1) ×2 U(2) ×3 U(3), (1)

where, C is the core tensor, U(n) is the matrix of eigenvec-

tors associated with the Kn largest singular values along the

n-mode unfolding of the tensor X . If Kn = In, the Tucker3

decomposition is called Higher Order SVD (HOSVD) and if

Kn < In it is called Lower Rank-(K1,K2,K3) Tensor Ap-

proximation (LRTA-((K1,K2,K3)) [5].

Fig. 2. Tucker3 decomposition model of a 3 order tensor X .

2.2. A tensor decomposition based restoration

We assume that the hyperspectral tensor R is the sum of the

desired information X and an additive white Gaussian noise

N :

R = X + N . (2)

When noise N is assumed to be independent from signal X
and provided the classical multidimensional signal processing

assumptions [3] are fulfilled, E(n) is the superposition of two

orthogonal subspaces: the signal subspace E
(n)
ss of dimension

Kn, and the noise subspace E
(n)
ns of dimension In−Kn, such

that E(n) = E
(n)
ss ⊕ E

(n)
ns .

The LRTA-(K1,K2,K3) [5] uses the Kn singularvectors

associated with the Kn singularvalues to obtain the lower

rank tensor approximation X̂ from tensor R :

X̂ = R×1 U(1)
s U(1)T

s ×2 U(2)
s U(2)T

s ×3 U(3)
s U(3)T

s (3)

where U(n)
s is the signal subspace spanned by Kn singular

vectors.

In a filtering framework, LRTA does not necessarily pro-

vide the best n-mode filters such that it is a approximation

method which minimizes the square error between the esti-

mated tensor X̂ with the noised tensor R. Our aim is to esti-

mate the desired X thanks to a multidimensional filtering of

the data:

X̂ = R×1 H(1) ×2 H(2) ×3 H(3) (4)

From a signal processing point of view, the n-mode product

is a n-mode filtering of data tensor R by n-mode filter H(n).
The optimization criterion chosen to determine the opti-

mal n-mode filters
{
H(n), n = 1, 2, 3

}
is the minimization

of the mean square error between the estimated HSI tensor X̂
and the expected HSI tensor X :

e(H(1),H(2),H(3)) = E X −R×1 H(1) ×2 H(2) ×3 H(3)
2

(5)

This filtering modelling permits to process jointly all modes

and to keep intact the multidimensional structure of the data.

In the next section we express H(n), we propose a detection

criterion to estimate Kn and finally we define the multiway

filtering from the n-mode filters H(n).

3. MULTIWAY FILTERING

3.1. Expression of n-mode filters

Following [3] by developing the squared norm of equation

(5), the expression of H(n) becomes :

H(n) = E[Xnq(n)RT
n ]E[RnQ(n)RT

n ]−1 (6)

with
q(n) = H(m) ⊗ H(p), (7)

Q(n) = H(m)T H(m) ⊗ H(p)T H(p)
(8)

where m �= n and p �= n and where the symbol ⊗ defines the

Kronecker product.

From the criterion which is minimized, the n-mode fil-

ters H(n) can be called n-mode Wiener filters. In opposite to

the result obtained for 2D Wiener its covariance matrices are

weighted by the others n-mode filters according to equations

(7) and (8). Thus, each n-mode filter is expressed by :

H(n) = U(n)
s Λ(n)

s U(n)T

s (9)
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where,

Λ(n)
s = diag

⎧⎨
⎩λγ

1 − σ
(n)2

γ

λΓ
1

, ...,
λγ

Kn
− σ

(n)2

γ

λΓ
Kn

⎫⎬
⎭ (10)

in which {λγ
i , ∀i = 1, . . . , Kn} and {λΓ

i ,∀i = 1, . . . , Kn}
are the Kn largest eigenvalues, of matrices

E
[
Xnq(n)RT

n

]
and E

[
RnQ(n)RT

n

]
respectively . Also, σ

(n)2

γ

can be estimated by determining the mean of In−Kn smallest

eigenvalues of γ
(n)
RR:

σ(n)2

γ =
1

In − Kn

In∑
i=Kn+1

λγ
i . (11)

Note that all expressions require the knowledge of the sig-

nal subspace dimension Kn. We propose in the next section

to estimate it by an information criterion.

3.2. Estimation of the signal subspace dimension

Kn is the dimension of the useful n-mode signal subspace of

each n-mode. When filtering is performed, if Kn is too low,

information is lost if Kn is too elevated, noise is included

in restoration. In these two cases, the necessary number of

eigenvalues is not well approximated and the estimated tensor

is not optimal.
For this purpose, we adapt a well-know detection Akaike

information criterion (AIC) [6]. We estimate Kn for each
n-mode by minimizing AIC criterion. Consequently, for each
n-mode unfolding of R, the AIC criterion can be expressed as

AIC(k) = −2M

i=In∑
i=k+1

log λi

+M(In − k) log

 
1

In − k

i=In∑
i=k+1

λi

)
+ 2k(2In − k) (12)

where (λi)1≤i≤In
are the In eigenvalues of the covariance

matrix of the n-mode unfolding matrix of R: λ1 ≥ λ2 ≥
. . . ≥ λKn

> λKn+1 = λKn+2 = . . . = λIn
= σ2, and M is

the number of columns of the n-mode unfolding matrix of R.

3.3. ALS algorithm

An alternating least Square algorithm is needed to jointly find

H(n) n-mode Wiener filters that permit to reach the global

minimum of mean square error e(H(1),H(2),H(3)) given by

(5). One ALS algorithm can be summarized in the following

steps, with H(n),0 = IIn for all n = 1, 2, 3 :

ALS loop: while
∥∥X −Rk

∥∥2
> ε a priori fixed threshold

for n = 1, 2, 3:

1. Signal subspace dimension estimation:

Kn = argmin
k

AIC(k), k = 1, · · · , In , see equation (12)
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Fig. 3. SNR improvement with respect to the injected SNR

varying from -8 dB to 20 dB

2. n-mode filter estimation:

• Rk
n = R×m H(m),k ×p H(p),k

• H(n),k+1 = argmin
Z(n)

X −Rk
n ×n Z(n)

2

,

Z(n) ∈ R
In×In

3. Multiway filtering,

Rk+1 = R×1 H(1),k+1 ×2 H(2),k+1 ×3 H(3),k+1,

k ← k + 1.

The ALS algorithm permits to jointly determine the n-mode

filters. Therefore all ways are processed simultaneously. The

n-mode filters are iteratively fitted to each others in order to

provide an optimal multiway filtering in the sense of mean

square error.

4. IMPROVEMENT OF TARGET DETECTION

A high spatial resolution HYperspectral Digital Imagery Col-

lection Experiment (HYDICE) is considered in all our exper-

iments. This HSI can be modelled by a 3-order tensor R ∈
R

150×150×157. We compare our multiway filtering denoted

by Wiener multiway with 3 classical methods. The two first

methods permit to highlight the advantages of use of the ten-

sor model. The first one consists in a consecutive Wiener fil-

tering of each spectral channel, which takes advantage of spa-

tial information, denoted by 2D-Wiener. The second one, an

hybrid filter, consists in a preprocessing that decorrelates the

channels before applying Wiener filtering, this filter denoted

by PCA-2D Wiener takes advantage of spatial and spectral

informations but independently. The third comparative NR

method, a tensor decomposition based method takes advan-

tage of whole information jointly and simultaneously but by

minimizing different criterion. It is the LRTA-(K1,K2,K3).
Our noise is a Gaussian distribution. Figure 3 shows the

SNR improvement of the different NR methods with respect

to a injected SNR varying from -8 dB to 20 dB. In the sense

of SNR the multiway filtering gives the best restoration.
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Fig. 4. Targets from the HYDICE image (left) and their spec-

tral signature (right).

To perform the target detection we use the adaptative co-

herence / cosine estimator (ACE) detector [7] a well-known

constant false alarm rate (CFAR). The ACE can be expressed

as :

DACE =
xT Γ̂s(sT Γ̂−1s)−1sT Γ̂−1x

xT Γ̂−1x
(13)

where Γ̂ is the estimated covariance matrix of the 3-mode un-

folding matrix, X̂3, s and x are respectively the target and

test spectra. s is assumed a priori known from a supervised

method directly on the initial HSI. Figure 4 shows the tests

targets in the initial HSI and their spectral signature. So when,{ DACE > ηACE , the target is present;

DACE < ηACE , the target is absent.
(14)

Where ηACE is a detection threshold which allows the prob-

ability of detection and of false alarm estimation.

Figure 5 represents the probability of detection with re-

spect to the SNR varying from -3 to 30 dB and with a proba-

bility of false alarm fixed at 10−3. In regard to the probability

obtained without processing we notice that the ACE detector

is sensitive to noise power. The two tensor decomposition

based methods give the best improvement of the detection

probability compared to the classical bidimensionnal meth-

ods. The use of tensor model is highlighted. Whatever noise

power our multiway restoration permits a significant improve-

ment of the target detection. This can be explained by its

good spectral signature estimation which does not impair the

discrimination power of the targets thanks to the joint spatial-

spectral processing. The ACE detector gives probability of

detection upper to 0.7 until a SNR equal to 20 dB without

processing, 14 dB after the band by band restoration, 8 dB

after the hybrid filter, 3 dB after the LRTA-(K1,K2,K3) and

-3 dB after our multiway filter (Fig. 5). Our method permits

to provide a target detector which is robust to noise.

5. CONCLUSION

In this paper, we have described a new algorithm for multi-

dimensional and multicomponent restoration in order to im-

prove target detection. We proposed a tensor model to con-

sider the whole data. Both spatial and spectral information are
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Fig. 5. Probability of detection with respect to the SNR and

with a fixed probability of false alarm equal to 10−3

jointly taken into account in the processing thanks to the ALS

algorithm. The extension of the well-known AIC criterion

enables to estimate the signal subspace dimension for each

mode which can not be chosen empirically due to the large

HSI dimension. The importance of the non-separability of

both spatial and spectral information is highlighted and its im-

pact on target detection was demonstrated using experimental

data. We conclude that multiway filtering realizes valuable

target detection of HSI by restoring the spectral signature.
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