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ABSTRACT

In this paper a method for the extraction of shading and reflectance
intrinsic images from a single uncalibrated image is presented. It is
based on the classification of the image derivatives as either caused
by shading or reflectance effects, using an illumination-invariant im-
age to guide this classification. Our approach avoids the learning
process – which requires ground truth intrinsic images – and obtain
results comparable with the state of the art.

Index Terms— Reflectance Recovery, Intrinsic Images

1. INTRODUCTION

The image of a scene depends on many physical characteristics of the
surfaces, such as illumination, orientation, depth, reflectance. All
these information are confounded by the imaging process into an
array of integer values, the sensed image, which reveals the physical
parameters only indirectly. An intrinsic image [1] is an image that
represents one of these physical properties, which are intrinsic to the
surfaces in the scene. These intrinsic images are extremely useful,
for they can be related to the scene far more easily than the sensed
image.

The ability to decompose an image into its intrinsic components
is a major step toward scene understanding, because algorithms often
rely exclusively on one of the intrinsic characteristics of the scene.
For example, shape-from-shading techniques require images with no
changes in colour (or albedo). In the context of 3D modelling, the
reflectance image is used as a texture map: being devoid of illumi-
nation effects the model can be re-illuminated without artifacts.

In this paper a new method for decomposing a single image into
two intrinsic images – a shading image (the illumination at each
point) and a reflectance image (the colour at each point) – is pro-
posed.

In literature we can find relatively little work on this problem.
Some discriminative approaches attempt to distinguish the effects
of shading and reflectance. Among these, the Retinex algorithm
[2] was one of the earliest. It originally described lightness per-
ception for Mondrian images and it worked on lines in the image.
Afterwards, Horn [3] proposed a method that extends this on 2D
image. Retinex relies on the assumption that the changes in the re-
flectance of a surface lead to large derivatives, while illumination,
which varies slowly, causes small derivatives. Thus, the recovery of
reflectance and shading images is obtained by derivatives classifica-
tion. However, the assumption may not hold in real images. Freeman
and Viola [4] add a smoothness prior on the inferred shape in an im-
age to classify such image as either entirely created by shading or
all due to reflectance changes. Alternatively, Bell and Freeman [5]
trained a classifier to use a set of linear features, instead of deriva-
tives only, based on a steerable pyramid.

A second heuristic adopted to extract intrinsic images is that the
shading and reflectance images can be found by filtering the loga-
rithm of the input image [6]. This approach assumes that the shading
component is concentrated in the low spatial frequency bands of the
log input, while the reflectance image can be found from the high
spatial frequencies. However, this assumption, like the one under-
lying Retinex, also tends not to be true in real images, especially if
cast shadows or highlights are present.

Differently from discriminative approaches, generative methods
create possible surfaces and reflectance patterns that explain the im-
age, then use a model to choose the most likely surface. An ap-
proach developed by Sinha and Adelson in [7] works in a domain
of painted polyhedral/origami objects, with presegmented junctions
and regions. In [8] the authors generate a synthetic world of scenes
and their corresponding rendered images, modeling their relation-
ships with a Markov network.

In a different direction, Weiss [9] proposed to use multiple im-
ages where the reflectance is constant, but the illumination changes.
Using many images ensures that the problem is well-posed, but im-
plies that the application of the method is quite restrictive.

A recent work by Tappens et al. [10] takes a discriminative ap-
proach by classifying the derivatives of the image using both classi-
fiers based on the image colour information and classifiers trained to
recognize local image patterns to distinguish derivatives caused by
reflectance changes from derivatives caused by shading. The method
is based on learning estimators that predict filtered versions of the
desired image. However, in this problem finding a training set of
real data is not trivial. In [11] a set of ground truth intrinsic images is
created using colour to measure shading separately from reflectance:
test images are pieces of paper coloured with a marker, not visible
in the green channel. Even though the resulting images are ground
truth decompositions this test set remain quite artificial and it is not
clear how it can generalize the behaviour of real cases.

In this paper we build on [12], where an invariant gray-scale
image, independent from illumination condition, is derived from one
uncalibrated image, without any learning operations. The invariant
image is then used to produce a shadow-free image.

In this paper, instead, we use the same invariant image to pro-
duce the reflectance intrinsic image, i.e., a shading-free image, and
the illumination image as well. The results are comparable to those
reported in [10], but with no need for a training set.

2. PROBLEM FORMULATION AND OVERVIEW

Assuming a linear response of the camera, the input image I(x, y)
is modelled as the product of the shading image S(x, y) and the
reflectance image R(x, y):

I(x, y) = S(x, y) · R(x, y). (1)

The goal is to recover S(x, y) and R(x, y) from I(x, y).

III - 4851-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007



Fig. 1. The overall technique for the extraction of intrinsic images.

This formulation implies the implicit assumption that the sur-
faces are Lambertian. Although this might be considered a restrictive
hypothesis, it offers a tractable starting point from which techniques
for image decomposition can be developed.

Another assumption, that will be justified later on, is that there
are no sharp illumination changes in the image (i.e., cast shadows).
This is coherent with the fact that this paper is complementary with
respect to [13], which deals with shadows removal.

As in most of the other approaches in literature, instead of es-
timating S(x, y) and R(x, y) directly, we attempt to estimate their
derivatives: we determine which variations in the original image are
due to shading effects and which are due to reflectance changes. We
assume that it is unlikely that significant shading boundaries and re-
flectance edges occur at the same point. This permits to treat every
image derivative as either caused by shading or reflectance, thus re-
ducing the problem to binary classification of the image’s x and y
derivatives.

This classification is realized with the help of the invariant im-
age [12]. This image is obtained by projecting the log-chromaticity
image in a direction independent from lighting effects. Although it
is independent from illumination, it can not be taken as the target
reflectance image, for it is only gray-scale and lacks some fine re-
flectance details as well. However, by construction its derivatives
are due to changes in reflectance only, so they provide useful infor-
mation to guide the classification of derivatives of the original image.

The idea is to compare the derivatives of the original and invari-
ant image and to classify a small difference between the two as a
shading effect and a great difference as a reflectance effect. In fact,
areas of smooth illumination change in the original image tend to be-
come nearly flat areas in the invariant one (small difference). On the
contrary, sharp variations in the original image, due to reflectance,
yield great variations between the two derivatives. This is the basis

for classification in our approach, and it permits us to avoid a learn-
ing process. The overall technique is schematized in Fig. 1 and it
will be detailed in the following Sections.

3. EXTRACTION OF THE INVARIANT IMAGE

Consider a fairly narrow-band camera, with a RGB sensor, which
images a set of coloured Lambertian surface patches under the day-
light. In the log-chromaticity space, given by logarithm of the chan-
nel ratios {R/G, B/G}, every pixel in each patch is approximatively
collapsed into the same dot. As the illuminant changes, the log-
chromaticity points move along an approximately straight line which
is independent of the magnitude and the direction of the lighting.
Projecting colours perpendicular to this invariant direction due to
lighting change produces a 1D gray-scale image that is invariant to
illumination. In [12], an algorithm for the extraction of such image,
invariant to illuminant colour and intensity, from an uncalibrated im-
age is proposed. For the sake of space we refer to [12] for description
and details of this algorithm. An example of invariant image extrac-
tion is depicted in Fig. 2.

(a) (b)

Fig. 2. Extraction of invariant image example: (a) original image;
(b) gray-scale invariant image.

If the original image does not match with the assumptions the
resulting invariant image turns out corrupted by noise. Then, before
proceeding any further, we try to restore such image by applying
a regularization process based on a Markov Random Field (MRF)
[14]. Our a-priori model for the invariant image is piecewise con-
stant. The minimization is performed by a simulated annealing al-
gorithm using Metropolis sampler [15, 14].

4. CLASSIFICATION

Let ρk(x, y) denote the logarithm of the grey-scale image corre-
sponding to a single channel of the sensed colour image. We first
calculate the gradients:

∇xρk(x, y) =
∂

∂x
ρk(x, y)

∇yρk(x, y) =
∂

∂y
ρk(x, y) (2)

Then, in order to take into account the variations derived from the
three channel, we consider their mean ∇̄x and ∇̄y.

Similarly, we calculate the derivatives of the regularized invari-
ant image I(x, y):

∇xI(x, y) =
∂

∂x
I(x, y)

∇yI(x, y) =
∂

∂y
I(x, y) (3)
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The objective now is finding a binary classification of ∇̄x and
∇̄y, by comparing them with∇xI and∇yI. The idea is that smooth
variations in illumination are flat regions in the invariant image. So,
if the difference between the two derivatives is small, the variation
must be classified as due to shading, as due to reflectance otherwise.
This is realized with the following thresholding operation:

qi(x, y)=

8<
:

1 if ‖∇̄i(x, y) ‖ > ‖∇Ii(x, y)‖
and ‖∇̄i(x, y)|| − ||∇Ii(x, y)‖ ≤ τ

0 otherwise
(4)

The function qi is equal to 1 when ∇̄i(x, y) is due to shading, 0 in
the other case. qi is a classification of the derivatives of the original
image, and from that we can obtain Fsh,x and Fsh,y , the derivatives
of the shading image, as well as Fref,x and Fref,y, the derivatives
of the reflectance image.

5. INTEGRATION

Once the derivatives of the shading and reflectance images are esti-
mated, they can be used to recover the actual images. Each derivative
represents a set of linear constraints on the image, and using both
derivative images results in a overconstrained system. We recover
each intrinsic image from its derivatives with the same method used
by Weiss in [9] to find the pseudoinverse of the unconstrained sys-
tem of derivatives. If fx and fy are the filters used to compute the x
and y derivatives and Fsh,x and Fsh,y are the estimated derivatives
of shading image, then the solution for S(x, y) is:

S(x, y) = g∗[(fx(−x,−y)∗Fsh,x)+(fy(−x,−y)∗Fsh,y)], (5)

where ∗ is convolution, f(−x,−y) is a reversed copy of f(x, y),
and g is the solution of

g ∗ [(fx(−x,−y)∗fx(x, y))+(fy(−x,−y)∗fx(x, y))] = δ. (6)

In this work, fx and fy are [−1, 1] filters. The reflectance image is
found in the same fashion.

6. EXPERIMENTAL RESULTS

We applied the approach to real data. We firstly calculated the invari-
ant image, and restored it using MRF; we classified derivatives of the
original images by comparison with the derivatives of such invariant
image; finally, we obtained the actual shading and reflectance image
by integration.

The first example, the Reindeers image, shows the effectiveness
of the approach (Fig. 3). As the reader can notice, the shape and
shading effects, on the ears for example, are correctly in the shading
image, while the reflectance image contains only colour information.

The Baseball image is taken from Tappens et al. [10]. Fig. 4
shows the result obtained with our method. Comparing them with
[10], reflectance images are good approximations of a purely flat
coloured image, while in both cases the shading images have some
defects: in our case, some parts are too smooth, while in Tappens et
al. some reflectance effects are present.

The Lego image is taken from [10] too, and in Fig. 4 the results
are shown. Using our method, the reflectance image is clear and
sharp, while the one obtained by Tappens et al. [10] is quite blurred,
meaning that some edge points due to reflectance are missed. On the
contrary, our shading image is less refined, with lack of some details.

(a) (b)

(c) (d)

Fig. 3. Example of extraction of intrinsic images: (a) original im-
age; (b) invariant image restored by MRF; (c) reflectance image; (d)
shading image.

Results from an outdoor image, Child, are also depicted in Fig.
4. As the reader can notice, the invariant image correctly does not
contain illumination effects, and this leads to an almost correct sep-
aration into reflectance and shading images. In [10], the shading
image appear quite artificial, with over-emphasized details; the one
obtained with our method, instead, correctly recover shape and shad-
ing information.

7. COMMENTS AND FUTUREWORK

Imaging is a many to one mapping which confounds intrinsic im-
ages into the sensed image. It is no surprise, then, if the problem
of extracting intrinsic images is a tough one, and it has not been
solved satisfactorily, yet. We presented here a technique for recov-
ering shading and reflectance intrinsic images. The results are com-
parable with the state of the art, but they are obtained without any
learning processes to classify derivatives. This work is motivated by
the fact that training set of reflectance and shading real data is very
difficult to obtain: the invariant image we use proves to be a good in-
strument to guide classification. However, such invariant image can
be obtained only under quite restrictive assumptions.

Moreover, the assumption that a variation in an image is due to
reflectance or to shading does not always hold. In fact, the outline of
an object, for example, is usually both a change of reflectance and
of shading. One could circumvent this problem if the geometry of
the scene is known. In the context of 3D reconstruction, where the
intrinsic reflectance image is used as a texture maps, this is the case.
The 3D model can be projected into the image and used as additional
information to extract intrinsic images.

The plan for future work is to add geometric information and to
further investigate other strategies to obtain images that are invariant
to illumination, working in less restrictive conditions and possibly
with no loss of reflectance information.
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(a) (b) (c) (d)

Fig. 4. Examples of extraction of intrinsic images: (a) original image; (b) invariant image restored by MRF; (c) reflectance image; (d) shading
image.
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