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ABSTRACT
We address the problem of object registration when the obser-
vation differs from the object both geometrically and radio-
metrically. The geometric deformations being considered are
affine. The radiometric deformations are due to the a-priori
lack of knowledge regarding the locations and intensities of
the light sources. Hence, to solve the registration problem,
a joint solution for the radiometric and the geometric defor-
mations must be offered. A direct approach for solving the
joint registration problem as an optimization problem leads to
a high-dimensional non-convex search problem. In this pa-
per, we treat the images as vector valued measurements, such
that each element of the vector provides the intensity at a spe-
cific spectral (color) band. By applying a set of operators,
derived in the paper, to the vector valued data the original
high-dimensional search problem is replaced by an equiva-
lent problem, expressed in terms of two systems of linear
equations. Their solution provides an exact solution to the
joint problem.

Index Terms— Image registration, Image recognition, Pa-
rameter estimation, Nonlinear estimation, Multidimensional
signal processing

1. INTRODUCTION

This paper deals with the problem of deformation estimation
and object registration when two observations on an object
differ both geometrically and radiometrically. The geomet-
ric deformations we consider are affine, and the radiometric
changes are due to variations in the illumination on the object.
Thus, the problem we face is that of jointly estimating the
geometric and the radiometric changes that deforms one ob-
servation into the other. More specifically, in many problems
the illumination on the observed object is varying from obser-
vation to observation due to changes in the locations and in-
tensities of the light sources, and their position relative to the
object. This variability results in variations in the measured
intensities across different observations. Solutions to the im-
age registration problem, that aim to find for each point in one
observation its corresponding point in the other by exploiting

the rich intensity information in order to achieve high accu-
racy in estimating the geometric deformation, must therefore
take into account the radiometric variability of the possible
observations. Hence, one must jointly solve the illumination
and geometric registration problems.
In this paper we study the case where the observed three-

dimensional rigid object undergoes an affine transformation.
The position of the light source(s) illuminating the object is
unknown. Hence the observed image may change with the
varying position of the light source relative to the object. To
simplify the derivation it is assumed however that the camera
is at a “large” distance from the object so that the geometric
deformation of the observed rigid object is affine.
In order to solve the registration problem completely, the

effects of the possible illumination variations between the two
images to be registered must be taken into account, and the so-
lution for estimating the geometric deformation must be de-
signed to be invariant to the radiometric changes. This can
be achieved either by making the deformation estimation in-
trinsically invariant to the radiometric changes, or by solv-
ing jointly the problems of estimating the radiometric and the
geometric deformations. We intend to address the problem
of jointly estimating the geometric deformation x → Ax + k
and the illumination variation. To do so, we begin by intro-
ducing a model of the intensity variations caused by illumina-
tion variations.

2. THE ILLUMINATION MODEL

Many pieces of work attest to the fact that the set of images
of an object under all possible illumination conditions lies on
or near a low-dimensional cone in the space of images. In
the case of Lambertian reflectance and a convex object (or
more generally, no cast shadows), it is well known (see e.g.,
[2]) that any image of the object under an arbitrary point light
source at infinity can be generated from three other such im-
ages, provided that in these images all points of the object are
illuminated (in the following we’ll use the super script c to
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denote a single channel of a vector valued measurement):

gc(x) = max0(
3∑

i=1

aig
c
i (x)) (1)

where max0 takes the maximum of 0 and its argument. This
equation is a result of the fact that

gc(x) = max0(n(x) · s) (2)

where in the inner product expression s ∈ R3 represents the
light source magnitude and direction (assuming a point light
source at infinity, so that all the light rays reach the surface in
parallel and at same intensity, allows us to use s and not s(x)),
and n(x) ∈ R3 represents the object normal direction and
albedo at point x. Let {si}i=1..3 be the light sources for the
three images, assumed linearly independent. Any other light
source can be represented as a linear combination of these
three vectors:

s =
3∑

i=1

aisi (3)

Substituting (3) in (2), and noting that by the assumption that
all points of the object are illuminated by the three sources si,
n(x) · si ≥ 0, for every x, and thus n(x) · si = max0(n(x) ·
si) = gc

i (x), we obtain (1).
If we now include the effect of a geometric affine distor-

tion in (1), we find the following generalization of the basic
problem hc(x) = gc(Ax + k):

hc(x) = max0(
3∑

i=1

aig
c
i (Ax + k)) (4)

where now we have to estimate both the geometric transfor-
mation parametersA,k and the radiometric parameters ai.
A generalization of the above result [1] recognizes that

under multiple point light sources, the images formed by each
light source independently simply add. Thus under M light
sources, sm, an arbitrary image can be written as

gc(x) =
M∑

m=1

max0(
∑

i

am,ig
c
i (x)) (5)

Again we can include the effect of a geometric distortion and
create a further generalization of our basic model, in which
now we must also estimate the number of light sources, if
unknown.
The above analysis has a straightforward extension to the

case where the data (both templates and observations) are vec-
tor valued images: Let h : Rn → Rl be a vector valued
function defined on some compact support subset of Rn. (If,
for example, we analyze color images, n = 2, and the color
space is the span of the color coordinate system RGB, i.e.,
� = 3). In the following it is assumed that all light sources
are point light sources located at infinity, and are ideal white

so that every change of the direction, intensity or number of
such light sources uniformly affects all spectral bands.
Assuming the existence of M light sources and that the

deformation is affine, the image obtained in each spectral band
obeys the above model. Hence, the vector valued observation
is given by

h(x) = [h1(x), . . . , h�(x)]T such that

hc(x) =
M∑

m=1
max0(

3∑
i=1

am,ig
c
i (Ax + k)), c ∈ {1, . . . �}

(6)
In the following we make two assumptions:

1. Assuming that a light source illuminates the entire sur-
face, means mathematically that n(x) · s ≥ 0. There-
fore, narrowing our solution to the case where all light
sources (both the ones used for creating the templates
and the one creating the observation) illuminate the en-
tire surface (i.e., a line that connects a light source to
each point of the surface will not intersect with any
other point of the surface and will first meet the surface
on its front side), the max0 operation in (4) becomes
redundant.

2. Single light source: Dealing with light sources such
that all of them view the whole surface (as explained
above) enables an easy extension to the case of a fi-
nite number of light sources: omitting the max0 from
(5), we can change the summation order, and treat the
problem as if there was a single light source which is
equivalent to theM existing ones:

gc(x) =
M∑

ν=1

3∑
i=1

aν,ig
c
i (x) =

3∑
i=1

M∑
ν=1

aν,ig
c
i (x)

=
3∑

i=1

(
M∑

ν=1

aν,i)gc
i (x) (7)

Since (∀ν ∈ [1..M ], n(x)·sν ≥ 0) ⇒ n(x)·(
M∑

ν=1
sν) ≥ 0

there exists an “equivalent” light source, given by the
following linear combination of the three independent

light source: s =
3∑

i=1

ãisi where ãi =
M∑

ν=1
aν,i.

Under these assumptions, (6) can be compactly rewritten in a
vector form

h(x) =
3∑

i=1

aigi(Ax + k) (8)

3. PROBLEM DEFINITION

Denote byA,k the parameters of the affine deformation (we’ll
further assume that the determinant of the matrix A is pos-
itive), and by {ai}i=1..3 the illumination parameters. Given
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non-negative, bounded, Lebesgue measurable, compactly sup-
ported functions with no affine symmetryh(x), {gi(x)}i=1..3 ∈
MAff (R2, R�) (see [3] for a rigorous definition), represent-
ing vector-valued images as explained earlier, such that (8)
holds, the problem is to find the matrixA, the translation vec-
tor k and the coefficients {ai}, i = 1..3. In the following we
will refer to {gi(x)}i=1..3 as the set of three available tem-
plates, respectively obtained by illuminating the object using
three linearly independent point sources, while h(x) is the
deformed observation.

4. AN ALGORITHMIC SOLUTION

Let μ denote the Lebesgue measure on R2, and let I(0,∞)(x)
denote the characteristic function of the interval (0,∞) ∈ R.
Thus, for example, I(0,∞)(h(x)) is one for all the points x in
the support of h(x). Applying the operator I(0,∞)(x) to both
sides of (8) we have:

∫
I(0,∞)(h(x))dx =

∫
I(0,∞)(

3∑
i=1

aigi(Ax + k))dx

= |A|−1

∫
I(0,∞)(

∑
i

aigi(y))dy

= |A|−1

∫
I(0,∞)(

∑
i

gi(y))dy

⇒ |A| =
μ{supp[

∑
i

gi(x)}
μ{supp[h(x)]} =

μ{⋃
i

supp[gi(x)]}
μ{supp[h(x)]} (9)

Therefore, |A| can be estimated by the ratio between the sup-
ports of h(x) and the templates. Having estimated |A|, we
can launch the process of estimating{ai}, i = 1, 2, 3.
Rewriting (8) as a set of � equations we have

hc(x) =
3∑

i=1

aig
c
i (Ax + k), c = 1, . . . � (10)

Following [3], in order to convert (10) into a linear system
of equations we integrate both sides to get

∫
Rn

hc(x)dx =
∫

Rn

3∑
i=1

aig
c
i (Ax + k)dx

=
∣∣A−1

∣∣ ∫
Rn

3∑
i=1

aig
c
i (y)dy, c = 1, . . . , � (11)

From which we obtain

|A|
∫

Rn

hc(x)dx =
3∑

i=1

ai

∫
Rn

gc
i (y)dy c = 1, . . . �

or in a matrix form :⎡
⎢⎣

∫
g1
1(y)dy

∫
g1
2(y)dy

∫
g1
3(y)dy

...
...∫

g�
1(y)dy

∫
g�
2(y)dy

∫
g�
3(y)dy

⎤
⎥⎦

⎡
⎣ a1

a2

a3

⎤
⎦

= |A|

⎡
⎢⎣

∫
h1(x)dx
...∫

h�(x)dx

⎤
⎥⎦ (12)

Where in the above, the only unknowns are ai, i = 1..3. Solv-
ing this equation system (a least squares solution if � > 3)
yields the solution for the ai’s.
Having evaluated {ai}i=1,2,3, we compose a new equiva-

lent template g(x):

g(x) =
3∑

i=1

aigi(x)

This templates differs from the observation only geometri-
cally:

h(x) = g(Ax + k)

Following the approach in [3] and extending it to the case of
vector valued measurements, we evaluate first order moments
of the different “layers” , c = 1, . . . , � to calculate the affine
deformation matrixA. Let

A−1 =

⎛
⎜⎝

q11 · · · q1n

...
. . .

...
qn1 · · · qnn

⎞
⎟⎠

k =

⎡
⎢⎣

k1

...
kn

⎤
⎥⎦ , k̃ = −A−1k =

⎡
⎢⎣

k̃1

...
k̃n

⎤
⎥⎦

Let (A−1)j denote the jth row ofA−1. We then have∫
Rn

xjh
c(x)dx =

∫
Rn

xjg
c(Ax + k)dx (13)

=
∣∣A−1

∣∣ ∫
Rn

((A−1)jy + k̃j)gc(y)dy

=
∣∣A−1

∣∣ {
n∑

i=1

qji

∫
Rn

yig
c(y)dy + k̃j

∫
Rn

gc(y)dy}

c = 1, . . . , �

Thus for the case where n + 1 ≤ � we can solve for {qji}n
i=1

and k̃j . Similar system of equations is solved for each j to
obtain the entire matrixA−1 and the vector k.
Therefore, in the absence of noise and under the condi-

tions of the model, we accurately calculate the different pa-
rameters of the deformations. Due to the linearity of the so-
lution, when additive zero-mean noise is in presence, a L.S.
solution gives us a highly accurate estimation.
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5. NUMERICAL EXAMPLE

Fig. 1. The three templates

We start with a colored image and simulate different illu-
mination conditions to create the three templates. See Figure
1. With these three templates we create the observation (see,
top image in Figure 2), which is both radiometrically and geo-
metrically deformed such that

h(x) = (0.35g1 + 0.05g2 + 0.6g3)
[(

0.7 0.4
−1.1 1.2

)
x
]

Using the proposed procedure, we first estimate the Jacobian
of the deformation (Δ̂ = 1.2801) and the coefficients of the
illumination model (â = [0.3509 , 0.0503 , 0.6014]). Having
these at hand, we create the “equivalent” template (middle
image in Figure 2), by linearly combining the templates based
on the estimated coefficients in â. The calculation ofA yields

A =
[
0.7030 0.4023
- 1.1024 1.2033

]

From which we can reconstruct the observation (bottom im-
age in Figure 2). The difference between the observation and

the estimated observation has a mean equal to 2.0526e-004
and variance equal to 0.0092.

Fig. 2. Top to bottom: Observation; The new template - radiomet-
rically registered; Estimated observation
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