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ABSTRACT

Gauss-Markov Random Field (GMRF) image models are com-
monly used in many Bayesian-based imaging techniques to de-
fine priors that lead to computationally tractable solutions for
the image restoration problem. Recently, the color reconstruc-
tion literature has demonstrated, and effectively employed, the
high correlation among the bands of a color image for color re-
construction. In this paper, we formulate a compound GMRF
prior based on cross-channel spatial derivatives that reflects the
smoothness in the color-difference space in addition to the of-
ten used intra-channel smoothness assumption. The proposed
model is used to develop an effective method for restoring spars-
ely sampled color images in the presence of noise. The value of
the proposed method is demonstrated on the problem of color
reconstruction for single-sensor cameras.

Index Terms— Color reconstruction, Bayesian restoration

1. INTRODUCTION

The problem of restoration of images from sparse and noisy
data is generally ill-posed and stable solutions are obtained only
by the use of prior information in the estimates for true im-
ages. Bayesian methods are well suited for the problem of im-
age restoration since they allow for flexible and effective means
to incorporate prior information into the solution. Within the
Bayesian paradigm, a common choice for the estimator is the
maximum a posteriori (MAP) solution which provides an esti-
mate for the true image x from the noisy data y as the maximum
of the posterior probability density function p(x|y), which is in
effect the most likely image given the occurrence of the data y.
The choice of p(x), the prior density function, greatly affects
the quality of the solution.

Markov random field (MRF) image models effectively de-
scribe the smoothness and local-nature of features in the general
natural scene and have been extensively used to define image
priors. MRFs are derived from potential functions that may be
thought of as representing a quantity akin to energy. The de-
sirability of configurations of local intensities depends on the
value of the resulting potential function. Common potential
functions of note are functions of the type ψ(xi − xj), where
xi and xj are intensity values at the ith and jth pixel respec-
tively. A common prior model is the Gauss-Markov random
field (GMRF) where ψ is a quadratic. A major issue with the
GMRF model is its behavior across edges. Cost functions based
on GMRF models will penalize large intensity differences be-
tween pixels and characteristically oversmooth across edges.
Typically, local features and edges are accommodated by aug-
menting GMRF models with line processes [1] that lend a de-
gree of adaptation to the estimation procedure. The line process

l acts to inhibit smoothing across edges and encourages smooth-
ing across pixels that do not lie across edges. The MAP estimate
in this case is found as

x̂, l̂ = arg max
x,l

p(x, l|y). (1)

Bayesian restoration of multichannel images has previously
been addressed in the literature. The authors [2] use multi-
ple line processes to define a potential function that has cross-
channel line-process terms. The cost function derived from the
resulting GMRF prior reduces the penalty on intensity differ-
ences in a particular channel if line processes in other channels
indicate the presence of an edge. This approach is useful since
edge features in scenes typically appear at boundaries of ob-
jects and are reflected across all color channels. The Bayesian
approach has also been used to address the specific problem of
color reconstruction from single-sensor data [3]. The authors
use a GMRF prior that includes only one line process that re-
flects the probability of the presence of an edge in all three color
channels of a color image.

In this paper we propose a novel prior model for color im-
ages that incorporates cross-channel edge information. The pro-
posed model is the result of a GMRF model augmented with
line processes that attenuate the penalty on large intensity dif-
ferences to prevent smoothing across edges. In addition, the
prior has cross channel terms that control spatial smoothing in
the color-difference channels. Section 2 details the reasoning
behind this approach. The image model and restoration algo-
rithm are developed in Section 3. In Section 4 the efficacy of
the proposed algorithm is demonstrated on the problem of re-
construction of color images acquired by single-sensor digital
cameras.

2. COLOR IMAGE MODEL

Digital color images are obtained either by direct acquisition
with digital cameras or by scanning prints or slides obtained by
film-based cameras. In both cases, the digital imaging device
typically acquires three color bands in the red, green, and blue
(RGB) regions of the spectrum. The forward model in the dis-
crete form for the signal acquired at a pixel location is given
by

ci = F

(
N∑

k=1

rksik + ηi

)
, i = R, G, B (2)

where the visible range of wavelengths is sampled N times,
ci is the intensity of the ith color, rk and sik are samples of
scene irradiance and sensitivity of the ith sensor respectively;
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(a) From left to right: The red channel shown in grayscale, ∇HR; and ∇V R

(b) From left to right: The R-G channel difference image; ∇H (R-G); and ∇V (R-G)

(c) From left to right: The R-B channel difference image; ∇H (R-B); and ∇V (R-B)

Fig. 1. A representation of horizontal and vertical gradients obtained as the first differences in the respective directions.

ηi is noise, and F (.) is a non-linear function that describes the
characteristics of the imaging system.

Channel intensities in (2) are functions of the inner prod-
ucts of the scene spectral content described by the irradiance
and the respective sensor sensitivities. The irradiance incident
on a sensor due to the general natural scene is a consequence
of the reflectance of the scene and the radiance of the illumi-
nant. Typically, the illuminant (sunlight, camera flash, fluores-
cent light, etc.) has broad support across the spectrum. Also,
sensor-sensitivities have considerable overlapping support, es-
pecially among adjoining bands (red and green, green and blue).
As a result, the channel intensities detected at a spatial location
are well correlated.

Color images can be decomposed into the luminance chan-
nel, which describes brightness, and two chrominance channels,
which convey information about color [4]. It is well known that
most significant structures in color images manifest predom-
inantly in the luminance channel. Color image enhancement
algorithms take advantage of this feature, for instance, unsharp
masking as applied to color images is performed only on the
luminance channel. Luminance is commonly defined as a lin-
ear combination of the color channels, although the weights for
each channel differ among various treatments. The appearance
of major features in the luminance channel suggests that fea-
ture edges in typical color images are very well correlated. This
phenomenon was demonstrated by the authors [5] by decom-
posing each color channel of a set of images into 4 bands by
filtering with directional (0, π/4, π/2, and 3π/4) high-pass fil-
ters. It was shown that corresponding high frequency compo-
nents across the color channels are highly correlated. An equiv-
alent assumption is that the color-difference channels are band-
limited. The smoothness of the R-G and R-B color-difference
channels in a natural scene is illustrated in the images in the left
column in Figs. 1(b) and 1(c) respectively.

It follows from the high correlation among high frequency
components of the color channels that the gradients of the color
channels will be highly correlated. This is illustrated in Fig. 1.
Figure 1(a) shows the red channel of an image from Kodak’s
PhotoCD PCD0992 [6] and the horizontal and vertical gradi-
ents found as the respective first differences of the red channel
image (denoted hereafter with the symbols ∇H and ∇V respec-
tively). Figs. 1(b) and 1(c) show the color-difference (∇HR -
∇HG, and ∇V R - ∇V G) images and the corresponding images
for the R-B channel respectively. The color-difference images

Table 1. Correlation coefficients found for the database of im-
ages in Eastman Kodak’s PhotoCD PCD0992 [6].

ρ i = R
j = G

i = G
j = B

i = B
j = R

i, j 0.8534 0.9230 0.7560

∇Hi,∇Hj 0.9777 0.9765 0.9561

∇V i,∇V j 0.9751 0.9776 0.9565

∇DLi,∇DLj 0.9760 0.9778 0.9546

∇DRi,∇DRj 0.9751 0.9774 0.9532

are characteristically smooth and the difference images of chan-
nel gradients illustrate their small magnitude. Table 1 shows the
correlation coefficients among color channels and color channel
gradients for an image obtained by stitching together all images
in Eastman Kodak’s PhotoCD PCD0992 [6]. Correlation co-
efficients for channel gradients in each direction are very high
in each case, and highest for adjacent bands (∇θR∇θG and
∇θB∇θR).

2.1. Prior model

From the discussion in Section 2, it follows that a suitable prior
model for color images will be formed from potential functions
of the type

ψ
((

xk
i − xk

j ) − (xk′
i − xk′

j

))
, (3)

where i, j are pixel locations, k, k′ are R,G,B, and k �= k′. The
cost functions derived from such priors will penalize the dif-
ference between the first-difference of pixel intensities between
color channels.

For an M × N color image, the true image x is defined as
a realization of a random process defined on a 3-D rectangular
lattice S with 3MN points. In addition we introduce two sets of
line processes lθ and cθ , θ = H, V, DL, DR, for the horizontal,
vertical, and left and right diagonal directions respectively. The
line processes lθ model intra-channel intensity transitions and
cθ model the transitions in the color difference channels. Fig. 2
shows all line processes associated with the RGB intensities at
a spatial location in the image.
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Fig. 2. Representation of a point in the 3-D lattice with as-
sociated line processes. Red, green and blue pixels are shown
surrounded by the respective line processes that denote intra-
channel edges (lkθ ). Line processes for the cross-channel terms

(ckk′
θ ) are appropriately labeled.

The prior joint density for x, lθ , and cθ is defined as a Gibbs
density to ensure that the resulting field is a MRF (Hammersley-
Clifford theorem). A Gibbs field has a density function of the
form

p(x) =

exp

(
− ∑

i∈C

ṽi(x)

)
Zx

, (4)

where Zx in the denominator normalizes the density function,
ṽi(x) is the potential function defined over the set of cliques C .
A subset C of S is a clique if every pair of distinct sites in C
are neighbors. Figure 3 shows the set of cliques used to define
the proposed prior model

p(x, lθ, cθ) =
1

Zx
exp

(
− 1

2σ2
x

∑
i

∑
k,k′

∑
θ

ζ(xk
i )2

+
(
(xk

i − xk
i:+θ) − (xk′

i − xk′
i:+θ)

)2
c̃kk′

θi

+ (xk
i − xk

i:+θ)
2 l̃kθi

)
(5)

where 1 ≤ i ≤ MN ; θ = H, V, DL, DR; l̃θi = 1 − lθi ,
c̃θi = 1 − cθi ; k, k′ = R, G, B, k �= k′ (xk are random
processes with intensities of the three color channels); and the
term ζx2

i j keeps the density in (5) from being improper. ζ is set
to a number that is small enough for this term to have little effect
on the solution. We used ζ = 10−3 for all reconstructions in
this paper. The index i : +θ refers to the pixel location adjacent
to i in the direction of θ (illustrated in Fig. 3), and i : −θ will
refer to the spatial location i : +θ + π.

2.2. Degradation Model

The degradation model is presented in the matrix vector form
as:

y = Ax + w, (6)

where y ∈ �3MN×1 is formed by stacking the three column-
ordered color channels. The degradation to the true image x ∈
�3MN×1 is described by A, which is a block matrix that has ex-
pressions for intra-channel blur as its diagonal blocks and cross-
channel blur as the off-diagonal blocks. The additive noise w
is zero mean, white, Gaussian noise with variance σ2

w. The
color channels are ordered column-wise and stacked such that
x = [xRT

, xGT
, xBT

]T (y is similarly arranged).

Fig. 3. The set of cliques associated with a red pixel at location
i. Locations of i : +θ, θ = H, V, DL, DR are labeled.

3. ALGORITHM DERIVATION

The maximum a posteriori (MAP) estimate of x, and the line
processes given the prior described in (5) is obtained by maxi-
mizing

p(x, lθ, cθ) =
p(y | x) p(x, lθ, cθ)

p(y)
. (7)

As p(y) is constant with respect to x, lθ , and cθ , the optimal
values of x, lθ , and cθ are the solution to the following opti-
mization problem

x̂, l̂θ, ĉθ = arg max
x,lθ,cθ

p(y | x) p(x, lθ, cθ), (8)

where p(y | x) is the likelihood function in the presence of ad-
ditive, uncorrelated Gaussian noise. Optimizing the cost func-
tion in (8) simultaneously over x, lθ and cθ is non-convex and
computationally prohibitive. Instead, we iteratively update the
estimate of x and then update the estimate of the edge variables.
Results derived in [7] based on the the iterated conditional mode
(ICM) algorithm [8] and the iterated conditional average (ICA)
technique are used to update x, lθ and cθ .

ICM is a greedy iterative algorithm that sequentially up-
dates values of pixels by maximizing their conditional posterior
probability. Specifically, the value of xk

i that maximizes the
conditional probability of xk

i , given all the remaining pixels xk
j ,

xk′
j , xk′

i ; i �= j, and k �= k′, and the associated edge variables
is found. The required conditional probability is given by

p(xk
i | lkθ , ckk′

θ , x\ik) = p(y | x) p(xk
i | xnb, l

k
θ , ckk′

θ ) , (9)

where x\ik is the set of all pixels in the image except the ith

pixel of color k, and xnb are neighboring pixels of xk
i .

It can be shown [7] that the conditional posterior density of
a pixel contingent on its neighboring elements xnb is

p
(
xk

i | y, xnb, lθnb , cθnb

)
=

1√
2π σi

e(−(xk
i −μi)

2/2 σ2
i ),

(10)
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(a) Original (b) Bilinear (c) POCS (d) Proposed

Fig. 4. Experimental results for an image cropped from Image
19 (lighthouse) from [6].

where

μi =
aT

i (y − Ax−i) + (σ2
w/σ2

x)ρk
i

aH
i ai + (σ2

w/σ2
x)γk

i

, (11)

and ai is the column of A corresponding to pixel xi, x−i is x
with a zero in the ith pixel, and

ρk
i =

∑
θ,k,k′

(
xk

i:+θ l̃kθi:+ + (xk
i:+θ + xk′

i − xk′
i:+θ) c̃kk′

θi:+

+ xk
i:−θ l̃kθi

+ (xk
i:−θ + xk′

i − xk′
i:−θ) c̃kk′

θi

)
γk

i = ζ +
∑

θ,k,k′

(
l̃kθi:+ + c̃kk′

θi+ + l̃kθi
+ c̃kk′

θi

)
(12)

The conditional mean is also the conditional mode and max-
imizes the probability in Equation (9). The ICM algorithm con-
sists of iteratively replacing pixel xk

i with its conditional mean
μk

i , i.e.

xkp+1

i =
aT

i

(
y − Axp

−i

)
+ (σ2

w/σ2
x)ρp

i

c + (σ2
w/σ2

x)γp
i

, (13)

where [.]p denotes the value of a variable after the pth iteration.
The (ICA) algorithm [7] is used to update the line processes
by iteratively updating a single line variable with its mean con-
ditioned on x and all the other edge variables. The restoration
algorithm iterates alternately between the pixel-updates and line
variable updates until convergence. Updated values are used in
subsequent iterations.

4. EXPERIMENTS

We demonstrate the proposed algorithm on the problem of re-
construction of full-color images acquired with single-sensor
digital cameras. Such cameras use a sensor-array that acquires
only one color at a particular spatial location. The full color
image is reconstructed in an operation commonly referred to as
demosaicking. The system model in this is case is

y = SHx + w (14)

where S is a sampling matrix that and H represents blur. The
proposed algorithm was used to reconstruct images sampled
by a Bayer CFA. For lack of space only results of one exper-
iment are shown here while more results may be found online
at: www.eng.auburn.edu/˜reevesj/research/ICIP07. The blur
matrix H for this particular experiment was set at the identity
to facilitate comparison with demosaicking methods that do not
include a deblurring operation. The values for σx, and σw were
set at 10−2 and 10−1 respectively. Experimental results are

Table 2. Channel RMS errors for images in Fig. 4

PSNR Red Green Blue

Bilinear 22.6339 9.3327 23.1383

POCS [5] 7.4252 3.1876 8.1445

Proposed 6.4902 4.0993 6.8904

shown in Fig. 4. Table 2 gives the RMSE values for the color
channels of the reconstructed images.

In the digital camera pipeline, deblurring is typically car-
ried out as a post-processing operation. The demosaicking op-
eration that occurs earlier is inherently a nonlinear blurring op-
eration. Deblurring carried out at a late stage in the imaging
pipeline can not take advantage of linear models of blurring. In
contrast, the proposed algorithm can be used to simultaneously
deblur and demosaic single-senor camera images.

5. CONCLUSIONS

In this paper we have proposed a novel cross-channel GMRF
prior model for color images. The proposed prior model takes
advantage of the high correlation between high-frequency edge
content across the color channels of an image. We also propose
a Bayesian algorithm that uses the prior model to obtain MAP
estimates for the restoration of color images. The proposed al-
gorithm can be used to jointly demosaic and deblur images ac-
quired with single-sensor digital cameras. The efficacy of the
algorithm is demonstrated in an experiment in which we demo-
saic a sparsely sampled color image to arrive at a good estimate
of the full-color image.
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