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ABSTRACT

As computer simulations gain acceptance for the modeling of

complex physical phenomena, there is an increasing need to

validate these simulation codes by comparing them to exper-

iments. Currently, this is done qualitatively, using a visual

approach. This is obviously very subjective and more quan-

titative metrics are needed, especially to identify simulations

which are closer to experiments than other simulations. In

this paper, we show how image processing techniques can be

effectively used in such comparisons. Using an example from

the problem of mixing of two fluids, we show that we can

quantitatively compare experimental and simulation images

by extracting higher level features to characterize the objects

in the images.

Index Terms— Code validation, experimental images, de-

noising, feature extraction, image analysis

1. INTRODUCTION

Computer simulations enable us to understand complex phe-

nomena through the analysis of mathematical models on high

performance computers. By filling the gap between physical

experiments and analytical approaches, computer simulations

provide both qualitative and quantitative insights into physi-

cal phenomena. They are particularly useful when the phe-

nomena is too complex to be analyzed analytically, such as

the flow around an airplane, or too expensive for extensive

experimentation, such as car crash tests.

Code validation, or comparing the output of computer sim-

ulations to experiments, is necessary to determine which sim-

ulation is a better approximation to an experiment. It can also

be used to determine how the input parameters in a simula-

tion can be modified to yield output that is closer to the ex-

periment or to refine the mathematical model underlying the

simulation.

Typically, the image from a computer simulation is com-

pared visually to an experimental image or an image from

another simulation. While such a qualitative comparison pro-

vides a coarse metric, there is an increasing need for more
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quantitative and objective metrics. This can be a challenge as

the simulation and experimental images may be of very differ-

ent sizes and appear quite different. Further, the experimental

images can be quite noisy, with a low contrast in the regions

of interest. Often, scientists are not interested in comparing

the entire simulation image to the experimental image, but in

comparing certain features of the objects in the two images.

In this paper, we describe how image processing techniques

can be used to provide a quantitative comparison of simula-

tion and experimental images in the context of a problem of

mixing of two fluids.

2. PROBLEM DESCRIPTION

We consider the problem of Richtmyer-Meshkov instability

[1] which results when an impulsive acceleration is applied to

the interface separating two fluids of different densities, for

example, as a result of a shock wave striking the interface

perpendicularly. Such instabilities arise in diverse situations

such as supernovas, oceans, and supersonic combustion, and

are therefore the subject of much research. Scientists are in-

terested in understanding what happens to this instability over

time, that is, how do the two fluids behave once the shock

wave hits the interface between them.

In our analysis, we focus on the problem where the inter-

face between a column of acetone/air mixture on the top of a

shock tube and a column of sulphur hexachloride at the bot-

tom, is perturbed by a shock wave at Mach 1.3 [2]. The goal

is to investigate what happens to the interface when the shock

wave, having gone through the interface once, is reflected off

the lower wall of the shock tube.

The experimental images for this problem are obtained us-

ing planar laser-induced fluorescence (PLIF) imagery, while

the simulation data is from a multi-material Eulerian adaptive

mesh refinement code. Figure 1 shows the data for the ex-

periments (top row) and the simulations (bottom row) as the

two fluids mix over time. The left panel shows the two fluids

(in grey and in black) after the shock has first passed through.

Note the 1 1/2 mushroom-shaped structure in the images. In

Panel (b), the shock wave reflected off the lower wall can be

seen as the white (grey) region between the two mushrooms

in the experiments (simulations). In panels (c) through (e),

the re-shock travels further and the mushroom structures start
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(a) (b) (c) (d) (e)

Fig. 1. Top row - the experimental images. Bottom row - the corresponding simulation images.

to collapse, leading to the mixing of the two fluids.

The experimental images are of varying sizes, with a typi-

cal size of 460×460. The simulation images are much larger.

Though they are uniform in size for all time steps, the im-

ages shown here have been cropped to a size of 1330 × 1280
to focus on the region of interest. It is clear from these im-

ages that a comparison using a one-to-one correspondence is

not possible. The sizes of the images are different and the

structures of interest are in different locations. There is also

noise in the experimental images in the form of vertical lines

which may be lighter or darker than the surrounding regions.

These noise streaks are typical of PLIF images. Further, there

is no structure visible in the darker regions of the experimen-

tal images, while in there are clearly defined structures in the

corresponding parts of the simulation. This is the result of the

experimental setup.

We plan to compare the images over time by extracting

higher level features from the data. Focusing on the single

complete mushroom, we can characterize it using features

such as the height of the mushroom, the width and height of

the cap, and the width of the stem, as shown in Fig. (2).

There are several challenges to this feature extraction. First,

in some of the experimental images, the noise is as strong

as the signal (see for example the vertical lines in panel (c),

top row, Figure 1). Thus, using an edge detector to separate

the darker mushroom from the lighter background will also

pick up these strong edges due to the noise. As this noise

is quite structured, we cannot use any of the traditional de-

noising techniques which are more suitable for noise which

is random in either pixel value or location such as Gaussian

noise or salt-and-pepper noise. For example, if we use a 1-D

median filter of a small size (say 1 × 5), it does not remove

the vertical lines as many of them have a width greater than 5

pixels. If instead we use a wider filter (e.g. 1 × 10), then the

noise is removed, but other details of the images are blurred.

Fig. 2. The features used to represent the mushroom include

(A): the height of the mushroom, (B): the width of the cap,

(C): the width of the stem, and (D): the height of the cap.

Therefore, the first step is to identify a denoising technique

specific to the characteristics of the noise in PLIF images.

3. DENOISING THE EXPERIMENTAL IMAGES

One problem domain with noise similar to the lines in PLIF

images is the restoration of archival films. Line scratches, in

the form of a vertical lines of bright or dark intensity oriented

more or less vertically across the image, are a common form

of degradation in such film. Automated denoising is done in

two stages - an initial line detection step, followed by an inter-

polation or reconstruction step. Deterministic and stochastic

approaches to detect these lines are described in [3] while the

recontruction using Bayesian analysis is described in [4].

As our goal is not to restore the image, but to suppress the

noise so that we can extract the mushroom structure from the

background, we use a simpler version of this approach:

• Step 1 - Enhance the image to improve the contrast us-

ing the following sharpening filter:
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Fig. 3. Illustrating the process of denoising of the original image (a) after steps 2, 4, 5, 6 and 7 (panels (b) through (f)).
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• Step 2 - Use a Canny edge detector to produce a binary

mask of all the edges.

• Step 3 - Segment the binary image into multiple ob-

jects using a connected component algorithm with 8-

connectivity of the edge pixels.

• Step 4 - Identify the noise lines by keeping those ob-

jects whose bounding box ratio of width/height is less

than 0.1. Since all these lines are almost vertical, we

expect this ratio to be small for the lines, but not other

objects in the edge image. The threshold value of 0.1 is

chosen heuristically based on the experimental images.

• Step 5 - If two lines are spatially close to each other,

e.g. less than 4 pixels apart, then consider all the pix-

els between the two lines as noise pixels. As the noise

lines are more than a single pixel wide, the Canny edge

detector results in two thin lines representing the two

edges of the wide line. This step merges these two thin

lines back into one thick line, resulting in a mask im-

age representing the noise lines in the image. Pixels

outside the mask are labeled 0, those inside the bound-

ary of the lines in the mask are labeled 1, and those on

the boundary of the lines in the mask are labeled 2.

• Step 6 - Create a denoised images as follows. First, ap-

ply a median filter of size 5 × 15 to the original image

to smooth all the lines (and the mushroom boundaries

as well). If the mask pixel has a value 0 or 2, set the

corresponding pixel in the denoised image to the same

value as the original image, else set it to the value in the

median-filtered image. This step ensures that only pix-

els within the unwanted lines, but not on the boundary

of the lines, are affected by the median filter.

• Step 7 - At the pixels in the denoised image corre-

sponding to mask pixels with value 2, apply an average

filter of size 5× 5. These are the pixels at the boundary

of the line segments. This step effectively smooths the

Fig. 4. The points on the edge image that can be used to

extract the features for the mushroom structures).

discontinuities between the original image pixels and

the the median-filtered image pixels.

4. FEATURE EXTRACTION

To extract the afore-mentioned features from the denoised ex-

perimental and the simulation images, we first obtain an edge

image and identify the key points shown in Figure 4. This is

done by borrowing an idea from optical character recognition

where characters are recognized by considering their horizon-

tal (vertical) projection profiles [5]. These are the histograms

of the number of edge pixels along horizontal(vertical) scan

lines. However, instead of considering the histograms them-

selves, we consider variations in the Number of Edge Pixels

in a Column (Row), hereafter abbreviated as NEPC (NEPR).

For example, Point A can be calculated as the point where

the NEPC is 1 and the y-location of the edge pixel is mini-

mum. When we move from point A to the right in the im-

age, point B is where the NEPC increases from 1 to a number

greater than 1. Then, as we continue to move to the right,

point C is the X location where the NEPC decreases from a

number greater than 1 to 1. Next, point C’ is where the NEPC

increases from 1 to a number greater than 1. Note that the

y-location of this point may not necessarily be the same as

the y-location of point C. Also, the width of the stem is de-

fined as the shortest distance between lines tangential to the

edge pixels in the stem. Next, point B’ is where the NEPC

decreases from a number greater than 1 to 1. Point D is de-
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Bx B′
x Cx C′

x Dy Ay Ey E′
y

E1 233 408 306 339 384 115 264 265
E2 231 412 309 338 376 115 252 253
E3 233 409 309 325 330 147 221 215
E4 238 409 313 333 309 168 232 229

Table 1. X or Y locations of the interest points on the mush-

room (Figure (4)) for the experimental images.

HEIGHT CAP STEM L. CAP R. CAP

HEIGHT WIDTH HEIGHT HEIGHT

E1 270 176 34 121 120
E2 262 182 30 124 124
E3 184 177 17 110 116
E4 142 172 21 78 81

Table 2. Mushroom features (in pixels) for the experimental

images.

fined as the highest y-location of an edge pixel as we move

to the right from B to B’. Points E and E’ can be calculated

in a manner similar to the calculation of B, except we use the

NEPR instead of the NEPC.

A similar approach to calculating the mushroom features

can be used for the simulation images. However, since the

simulation data captures the effects of the reshock better, es-

pecially in the region of the darker fluid, many more strong

edges are obtained in the edge image. As a result, the calcula-

tion of the interest points has to be modified. For example, the

calculation of B, B’, C, and C’ cannot be done by considering

the points where the NEPC transitions to or from 1; instead

we need to consider a larger number. This can be set either

through experimentation or by including additional tests to

confirm that the correct point has been identified. Also, the

calculation of D as the highest point on the mushroom has to

be done with care as the edges due to the reshock could be

higher than the top of the mushroom.

The locations of interest points in the edge image are given

in Tables 1 and 3 for experiments and simulations, respec-

tively. The corresponding mushroom features are given in

Tables 2 and 4. We do not consider the images in panel (e) of

Figure 1 as the mushroom structure has collapsed by then.

Note that a direct comparison of the values in Tables (2)

and (4) is not advisable as the pixels sizes are not the same

between the experiments and the simulations. However, we

can compare the structures by considering ratios of quantities,

or, if the pixels sizes are known for both the experimental

and the simulation data, use them to calculate the mushroom

features exactly.

5. SUMMARY AND CONCLUSIONS

In this paper, we have described the use of image process-

ing techniques to address an important problem in computer

simulations, namely, validating the simulations by comparing

Bx B′
x Cx C′

x Dy Ay Ey E′
y

S1 182 664 381 470 1171 448 845 873
S2 179 667 381 470 938 328 609 633
S3 183 667 402 448 1090 636 829 841
S4 175 673 403 446 983 596 762 777

Table 3. X or Y locations of the interest points on the mush-

room (Figure (4)) for the simulation images.

HEIGHT CAP STEM L. CAP R. CAP

HEIGHT WIDTH HEIGHT HEIGHT

S1 724 483 90 327 299
S2 610 489 90 330 305
S3 455 485 47 262 250
S4 388 499 43 222 206

Table 4. Mushroom features (in pixels) for the simulation

images.

them to experimental data. Through the use of denoising and

feature extraction, we have shown that image analysis tech-

niques enable a quantitative and objective comparison. They

also hold the promise of automation, which is desirable as the

simulation data can be quite large, making a manual analysis

infeasible.
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