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ABSTRACT

Recently, a new exemplar-based method for image comple-

tion, texture synthesis and image inpainting was proposed

which uses a discrete global optimization strategy based on

Markov Random Fields. Its main advantage lies in the use

of priority belief propagation and dynamic label pruning to

reduce the computational cost of standard belief propagation

while producing high quality results. However, one of the

drawbacks of the method is its use of a heuristically chosen

parameter set. In this paper, a method for automatically deter-

mining the parameters for the belief propagation and dynamic

label pruning steps is presented. The method is based on an

information theoretic approach making use of the entropy of

the image patches and the distribution of pairwise node po-

tentials. A number of image completion results are shown

demonstrating the effectiveness of our method.

Index Terms— Image restoration, Markov processes,

Stochastic fields

1. INTRODUCTION

Image completion is the process of filling the unknown re-

gion of an image from its observed part in a visually plausi-

ble way. It has been an active research topic in recent years

and there have been many advances in the development of

algorithms for solving this problem. Some examples are a

statistical-based method [1], a PDE-based method [2] that

propagates image Laplacians in the isophote direction, and

an exemplar-based method [3] that synthesizes pixels or im-

age patches using texture synthesis techniques. A recently

proposed exemplar-based technique [4] considers the image

completion problem as a discrete global optimization with a

well defined objective function based on a Markov Random

Field (MRF). Thus, this technique overcomes the limitations

∗Huy Tho Ho performed the work reported in this paper while at the Aus-

tralian National University and the NICTA Canberra Research Laboratory.
†National ICT Australia is funded by the Australian Government’s Back-

ing Australia’s Ability initiative, in part through the Australian Research

Council.

of other approaches such as greediness and ineffectiveness in

completing images where complex structures exist in the un-

known region. This approach also carries two important im-

provements over standard belief propagation (BP): priority-
based message scheduling and dynamic label pruning to sig-

nificantly reduce the performing time of BP.

This paper extends the algorithm used in [4] into a more

generic framework by providing an automatic mechanism to

determine parameters needed for the completion process, so

that it can be performed automatically on any input image

without user intervention. The remainder of this paper is or-

ganised as follows. Section 2 gives an overview of related

work and describes how Markov Random Fields and Belief

Propagation are applied to solve the problem of image in-

painting, in particular the improvements in the algorithm in

[4] and their effects in increasing the speed of BP. In Section

3, our method of automatically determining the required pa-

rameters is proposed. Results of testing input images with

different parameters are presented in the Section 4. Finally,

the conclusions are given in Section 5.

2. RELATED WORK

The method proposed in [4] has significantly reduced the time

to perform image completion by using MRFs and BP. Accord-

ing to the authors, their method reduced the computation time

for input images of size 320×240 pixels from hours to only a

few minutes on a P4 2.4GHz CPU, compared to standard BP.

On the other hand, the method is quite parameter-dependent

and different sets of parameters lead to different outputs for

the same input image. Moreover, the parameters need to be

chosen manually in a heuristic manner which is not desirable.

2.1. Markov Random Fields

The general framework for the image completion problem

will be defined as follows (using the same notations as in [4]).

Let I0 be the input image with a target region T and a source

region S (S ⊆ (I0 − T )). We want to fill the region T using
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(a) (b)

Fig. 1: Standard deviation of the patch entropies versus patch size. (a) Indoor scene. (b) Outdoor scene.

patches from S in a visually plausible way by using MRFs.

The image I0 will be divided into a lattice with horizontal

and vertical spaces (gapx, gapy) between nodes, respectively.

A lattice point is a MRF node n if its w × h neighborhood

intersects T . A 4-neighborhood system is created by edges E
of the MRF nodes {n}N

i=1. A set of labels L is formed in S
containing all w × h patches l that do not intersect with T .

We define the following energy function that determines

the quality of a labeling:

E({li}) =
N∑

i=1

Vi(li) +
∑

(i,j)∈E

Vij(li, lj) (1)

where

Vi(l) =
∑

p∈[−w
2

w
2 ]×[−h

2
h
2 ]

M(ni +p)(I0(ni +p)− I0(l +p))2

(2)

Vi is called a single node potential. The pairwise potential

Vij(li, lj) is defined similarly as the cost of assigning labels

(li, lj) to two neighboring nodes (ni, nj) and is calculated as

the sum of squared differences (SSD) over the overlapping

region of the two labels. It is also known as compatibility

function as it measures how well these patches agree [5]. The

optimal labeling L̂ = {l̂i}N
i=1 is found by minimizing Eq. (1).

2.2. Priority Belief Propagation and Label Pruning

Using negative logarithmic probabilities, a message from node

ni to a neighboring node nj at time t is defined as:

mt
ij(l) = min

li∈L
{Vi(li) + Vij(li, lj) +

∑
k:k �=j,(k,i)∈E

mt−1
ki (li)}

(3)

After s iterations, a belief vector {bi(l)}l∈L is computed and

the label l̂i = arg maxl∈L bi(l) is selected individually at

each node

bi(l) = −Vi(l)−
∑

k:(k,i)∈E

ms
ki(l) . (4)

However, standard BP is slow [5], heuristic [6], and requires

user intervention [7]. In [4], two improvements to BP were

introduced to increase the speed and to make the algorithm

converge after a small number of iterations.

The first extension is the use of message scheduling.

The order of a node transmitting messages to its neighbors

will be determined based on the confidence about its la-

bels. This will help the node that has the most informa-

tive messages transmit first in order to increase the confi-

dence of it neighbors. As a result, its neighbors will be

more tolerable to label pruning and the algorithm converges

faster. The priority of a node is defined as the inverse of

the cardinality of set P: priority(ni) = 1
|P | where P (ni) =∣∣{l ∈ L : brel

i (l) ≥ bconf}
∣∣, bconf is the confidence threshold

belief, brel
i (l) = bi(l) − bmax

i is the relative belief, and bmax
i

is the maximum belief of node ni.

The second improvement is dynamic label pruning. La-

bel pruning will be applied to a node if its number of active

labels is greater than Lmax, a user specified constant. The

labels of a visited node are traversed in descending order of

relative belief and those with brel
i (l) ≥ bprune are chosen as

active labels for this node. bprune is the label pruning thresh-

old belief. In order to avoid choosing many similar labels

to the active label set, a label is declared as active only if it

is not too similar to any of the already active labels, i.e. the

SSD between this label and any of the chosen labels is less

than a threshold SSDsimilar. Note that a minimum number

of labels Lmin is always kept for each node. Applying label

pruning to BP helps reducing the complexity of updating the

messages from O(|L|2) to O(|Lmax|2) [4].

3. AUTOMATIC PARAMETRISATION

In this section, a way for automatically determining the re-

quired parameters of the image completion method is pre-

sented. First, we present a method for determining the opti-

mal patch size based on the information content in the patches.
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Then, we use the distribution of node potentials to automati-

cally determine the label pruning parameters.

3.1. Patch Size

In the process of completing an image using MRFs and BP,

determining the right size of the patches helps improving the

quality of the output. If the patch size is too small, the patches

do not contain sufficient information for estimating the under-

lying scene texture. Otherwise, if the chosen patch size is too

large, block effects appear in the output and it is also diffi-

cult to learn the relationship between the local node and the

scene patches [5]. In this section, we propose a method of

choosing the right patch size based on the distribution of the

information content of the label patches.

The entropy of a label patch is defined as:

e = −
G−1∑
i=0

p(zi) log p(zi) (5)

where z is a random variable denoting gray levels, G is the

number of distinct gray levels, and p(zi), i = 0, 1, 2, . . . , G−
1 is the corresponding histogram of the label patch.

The entropy of a label patch defines the average amount of

information obtained by observing that patch. It will have a

small value if the dominant property of that patch is tone and

large value if the dominant property is texture [8]. To create

a set of labels that is the most suitable for the image comple-

tion task, the amount of information in each patch is not as

important as the distribution of information across patches in

the label set.

Let Ωu = {e1, e2, e3, . . . , eN} be the set of entropy val-

ues for patches of u. N is the number of labels obtained

for this size. Assuming that the distribution of values across

all Ω is Gaussian, the criterion for choosing the optimal

patch size is equivalent to maximizing the standard devia-

tion arg maxu,Ω σ(Ωu). By maximizing the statistical dis-

persion of the entropy values, we ensure that the best choice

of patches is available for the image completion task.

3.2. Label Pruning Parameters

In the algorithm proposed by [4], parameters such as bconf ,

bprune and SSDsimilar are determined in a heuristic way.

From Section 2.2, we know that the label pruning will be per-

formed only at the first iteration for each node and from Equa-

tions (1)-(4) we know that the potentials are a good choice of

representing the beliefs of each node. With a chosen patch

size of w × h, the SSD of each pair of labels will be cal-

culated to get a histogram. For a pair of labels li and lj , the

SSD is defined as:

SSD(li, lj) =
∑

p∈[−w
2

w
2 ]×[−h

2
h
2 ]

(I0(li+p)−I0(lj +p))2 (6)

As the number of labels is large, in order to increase the speed

of calculating the histogram, the SSD values will be divided

into Φ intervals, i.e. bins, of width q. Let nk be the number

of SSDs that lie in bin k, i.e. q k < SSD ≤ q (k + 1), and

n is the total number of values of SSD, the probability that a

SSD value is in the interval [q k, q (k + 1)] is:

Pr(k) =
nk

n
k = 0, 1, 2, ...,Φ− 1 (7)

From these Pr(k), the parameters bconf , bprune, and

SSDsimilar are chosen such that:

−bconf /q∑
k=0

pr(k) =
1
2

(8)

−bprune/q∑
k=0

pr(k) =
3
4

(9)

SSDsimilar/q∑
k=0

pr(k) =
1
4

(10)

In other words, bconf is chosen so that the cumulative sum of

the probabilities Pr(k) from bin k = 0 to bin k = −bconf

q is

0.5, i.e. 50% of the total number of SSDs are smaller than

−bconf . In the same manner, 75% of the total number of

SSDs will be greater than −bprune because we do not want

to over-prune good labels. The value of SSDsimilar is chosen

to be greater than 75% of the SSDs to help avoid wasting a

large part of the Lmax labels for similar patches.

4. EXPERIMENTS AND DISCUSSION

The proposed automatic parametrisation approach was tested

on a variety of images taken in both indoor and outdoor con-

ditions (see Fig. 2 for two examples). In the experiments, we

chose w = h and gapx = gapy = 1
2w = 1

2h to get a good

overlap region between two labels. As mentioned above, it is

sensible to limit the possible size of patches to be between a

minimum and a maximum patch size. In our experiments, the

minimum patch size is 6 × 6 and the maximum is 1
10 of the

size of the image. For a patch size below the minimum, we

found that patches did not contain sufficient information for

the image completion method to produce perceptually good

results. Similarly, a patch size larger than the maximum re-

sulted in strong, undesirable ‘block’ effects. For determining

the label pruning parameters, a bin size of q = 102 was used.

First, the optimal patch size was determined (cf. Sec. 3.1).

Fig. 1 shows the graphs of standard deviation of patch entropy

versus patch size. Once the optimal patch sizes were known,

which were 18× 18 for the indoor scene and 16× 16 for the

outdoor scene, the label pruning parameters were determined

(Sec. 3.2). Table 1 and Fig. 2 show the resulting parameters

and output images, respectively.
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(a) Indoor scene (b) Patch size 14 × 14 (c) Patch size 18 × 18 (d) Patch size 22 × 22 (e) Patch size 28 × 28

(f) Outdoor scene (g) Patch size 14 × 14 (h) Patch size 16 × 16 (i) Patch size 20 × 20 (j) Patch size 24 × 24

Fig. 2: Completion results for different patch sizes

Patch size bconf bprune SSDsimilar

14 −223× 102 −566× 102 5× 102

18 −371× 102 −895× 102 25× 102

22 −533× 102 −1241× 102 48× 102

28 −874× 102 −1995× 102 120× 102

(a) Parameters for the indoor scene

Patch size bconf bprune SSDsimilar

14 −263× 102 −572× 102 102

16 −328× 102 −733× 102 6× 102

20 −507× 102 −1114× 102 17× 102

24 −704× 102 −1577× 102 41× 102

(b) Parameters for the outdoor scene

Table 1: Parameters determined for different patch sizes

For the indoor scene, the floor area was filled in well in

all output images. However only in Fig. 2c, the table and the

wall were completed in a plausible way. Perceptually, it is

clear that patch size 18 provided the best result for the indoor

scene, which is in accordance with the result of the informa-

tion theoretic approach (Fig. 1). For the outdoor scene (Fig.

2f), the water surface and the pathway were filled in well in

all the outputs. However, the fountain area was reconstructed

convincingly only for patch size 16, as predicted in Fig. 1.

5. CONCLUSIONS

An automatic parametrisation method for the image comple-

tion method proposed by [4] has been presented. Through

the variation of the information content in each set of labels,

the optimal size of patches can be estimated. The parame-

ters of the Priority BP are calculated from the distribution of

node potentials. Our approach provides a framework for solv-

ing the image completion task without the need to manually

choose parameters. In future, we plan to use higher order

MRFs for image completion of complex scenes.
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