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ABSTRACT

Reconstruction of an underwater object from a sequence of

images distorted by moving water waves is a challenging task.

A new approach is presented in this paper. We make use of

the bispectrum technique to analyze the raw image sequences

and recover the phase information of the true object. We test

our approach on both simulated and real-world data, sepa-

rately. Results show that our algorithm is very promising.

Such technique has wide applications to areas such as ocean

study and submarine observation.

Index Terms— bispectrum, water wave, image, recon-

struction, distortion, refraction.

1. INTRODUCTION

Assume that we look through the moving water surface and

observe an underwater object (for example, a coral reef), we

would notice that the object is distorted due to the effect of

light refraction and motion blur. Such phenomena can be

recorded by a stationary video camera above the water. Each

image in the video stream may be degraded and blurred. Fig-

ure 1 shows a sample sequence of distorted images.

How to recover the target image from the video stream

(distorted images) is a very challenging and a cross-disciplinary

task, which involves physics, optics, computer vision and im-

age processing. Such technology has wide applications such

as underwater surveillance and submarine observation.

In past decades, researchers from different areas have ad-

dressed the problem of recovering underwater image [1, 2,

3]. Some focused on reconstructing the surface of the wa-

ter, some tried statistical theory to recover the target, some

studied light refraction, and some applied image processing

techniques. One simple method is the average-based method,

which temporally averages the data stream [1]. Another method

is to locate the minimum distorted regions and form the final

image from these regions [2, 3]. Both methods work well in

many situations. The latter method works better under severe

disturbed conditions.
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Fig. 1. A sample sequence of distorted images.

In this paper, an original approach to obtaining the true

image from the sequence of the distorted images is proposed.

We estimate the Fourier phase of the target image by analyz-

ing the averaged bispectrum of the image ensemble. Results

of our experiments show that our algorithm is promising.

2. PROBLEM STATEMENT

Before constructing an algorithm, it is worth introducing the

physical background of our problem. Figure 2 demonstrates

the refraction law. Assume that light passes straight up from

the planar ground under the water, there will be no refraction

if the water surface is still. Under this condition, the observer

at point a will see the object O. However, when the water

waves exist, the normal to the water surface N is tilted by an

angle. This results in that the observer at point b will see O′

instead of O. According to Snell’s law, the refractive index of

a material is calculated by the angle c and d. Here, the index

of refraction of water is 1.33.

When recording a particular object under the moving wa-

ter surface over time, we will see that the object is distorted

and moves around its correct position. These movements

are Gaussian distributed with its center being around the cor-
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Fig. 2. A simple illustration of the refraction law.

rect position in accordance with Cox-Munk Law[4]. The law

points out that, given a large surface area and stationary waves,

the distribution of the normals of the water surface is approx-

imately Gaussian. Efros et. al. confirmed this statement by

experiments[2]. Therefore the properties of Gaussian random

process can be utilized when processing the images.

The most common approach to such a problem is the average-

based method. The average-based method is to compute the

temporal average over the image ensemble[1]. It works well

under comparatively smooth conditions. However, it fails

when the target is too fine and has a lot of details. Recently,

several researchers proposed to form the target image by lo-

cating and combining the minimum distorted regions over

the sequence of the raw images[2, 3, 5]. The result of such

method is much sharper than that of the average-based method.

In this paper, we consider the task as a phase recovery

problem of images captured under disturbed conditions, so

that the bispectrum technique can be used to recover the cor-

rect phase of the target. Bispectrum techniques are primar-

ily used in astronomical imaging to reconstruct the target af-

fected by atmospheric turbulence[6]. To apply the technique

to our problem, a sequence of raw images are required. We

applied such a technique in our problem and achieved promis-

ing results.

3. BISPECTRUM TECHNIQUE

In this section, we give a brief review on the main technique

of our algorithm.

Assume that I(u, v) is the Fourier transform of a 2-D sig-

nal i(x, y) (for example, an image), which is also expressed

as the magnitude-and-phase form:

I(u, v) = |I(u, v)|exp{jφi(u, v)} (1)

From Eq(1), a signal can be recovered given that the magni-

tude and the phase in the Fourier domain are known. In this

paper, the bispectrum technique is used to recover the signal

phase.

The bispectrum has two main properties: (1) the phase in-

formation of a signal can be preserved and (2) the bispectrum

of a Gaussian signal is zero. This enables us to recover the

correct phase of a signal using the bispectrum technique.

The bispectrum is the Fourier form of the triple correlation

of a signal. The bispectrum of a 2-D signal is given by

B(u1, u2; v1, v2)
= I(u1, u2)I(v1, v2)I∗(u1 + v1, u2 + v2)
= I(u1, u2)I(v1, v2)I(−(u1 + v1),−(u2 + v2))

(2)

where B(u1, u2; v1, v2) denotes the bispectrum, and ∗ indi-

cates the complex conjugate. Note that the bispectrum of a

2-D signal is four dimensional.

Since the normal of the water surface is a Gaussian dis-

tribution, the phase distortion of a submerged object is also

considered as Gaussian distributed. This allows us to use

the properties of Gaussian random process and overcome the

phase corruption by averaging the bispectrum of the ensem-

ble of the raw images [6]. So that we build the relationship

between the object phase spectrum φO(u, v) and the phase of

the mean bispectrum φB(u1, u2; v1, v2) by

φo(u1 + v1, u2 + v2)
= φo(u1, u2) + φo(v1, v2)− φB(u1, u2; v1, v2).

(3)

From Eq.(3), one can estimate the phases at higher frequen-

cies using the phases at lower frequencies and the mean bis-

pectrum phases given that the phases at (±1, 0) and (0,±1)
are known (the phase at (0, 0) is zero)[7, 8, 9].

4. ALGORITHM

From the above analysis, we now construct our algorithm.

The first step is to divide the raw images into smaller size

patches and locate and discard the most distorted patches.

Such a method is similar to the lucky imaging technique in

astronomical imaging[10, 11], which aims to select the good

images to recover the target image. In the problem, Efros et.

al. show that one particular spot under the water surface suf-

fers different distortion in temporal space[2]: the local image

patch is more distorted under higher energy water wave sur-

face and less while the water surface is nearly flat. Here we

employ the image quality index proposed in [12] as the selec-

tion criterion.

Q =
4σxyx y

(σ2
x + σ2

y)[x2 + y2]
(4)

where x is the clean image and y is the test image, x and x2,

and y and y2 are the expectation and the variance of x and y,

respectively, σxy is the covariance of x and y. Because the

clean image is unknown and is what we are trying to find, we

substitute the mean of the raw image ensemble for x.

We then estimate the Fourier phase and the Fourier mag-

nitude of each patch of the target image after discarding the
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most distorted patches. The Fourier magnitude is estimated

by the averaged power spectrum of the image ensemble in

our experiment.

The phase of the object in the Fourier domain is recovered

using Eq.(3). Here, the recursive algorithm is employed [7].

Since the exact values of the phases at (±1, 0) and (0,±1)
are unknown, we use the mean image of the image ensem-

ble here again: φo(±1, 0) = φmean(±1, 0) and φo(0,±1) =
φmean(0,±1).

The final step is to reconstruct each patch of the target

with the Fourier magnitude and phase obtained in the previous

step, and to combine the patches to their right positions to

form the final image.

5. EXPERIMENTS

We test our algorithm on both simulated and real-world data.

Results show that our algorithm is promising.

5.1. Simulation

(a) One of the input images

(b) Result by the

average-based method

(c) Result by our algorithm (d) The ground-truth image

Fig. 3. The simulation results. The image reconstructed by

our algorithm (c) is much sharper than the output estimated

by the average-based method (b).

To simulate the water waves, we apply the model pro-

posed in [13]. The model assumes that the pattern in the wa-

ter is static and flat, and the average slant of the moving water

surface on one particular point is zero when observed for a

very long time. These assumptions fit our problem. In the

model, the shift of one point that moves off from its correct

position due to the effect of moving water surface is given by

{
dx = hp(1− 1/n) + N
dy = hq(1− 1/n) + N

(5)

where h is the distance between the water surface and the

planar ground under the water, n is the refractive index of

water, and N is white Gaussian noise. p and q are the su-

perposed patterns of water waves with different speeds and

lengths, they can be expressed by the wave number ui and vi,

the angular frequency wi and the amplitude ai as follows:

{
p = −∑

aiuicos(uix + viy − wit)
q = −∑

aivicos(uix + viy − wit)
(6)

By adjusting h, ui and vi, we can obtain different types of

waves and therefore simulate smooth and deep water waves.

We generate a sequence of 100 gray images of size 256x96.

The size of each image tile used in our experiments is 32x32.

Figure 3(a) is a sample distorted image simulated by the model,

(b) the averaged image of the data sequence over time, (c) is

the output of our algorithm, and (d) the true image. Note that

the image estimated by our algorithm is much sharper than

that by the average-based method, and more precisely repre-

sents the true image.

5.2. Real-world Results

In an experiment with a real water surface, the natural data

is captured by a video camera fixed above the water surface

with the object laid on the planar ground under the water. The

moving water surface is motivated by natural factors (e.g.,

wind produced by a fan and an object dropped into the wa-

ter). The water is clear and no account has been taken of the

attenuation of the image by a turbid media.

Figure 1 shows a sample sequence of the real-world data.

The image size is 288x192. In total 120 images are used and

the size of image tiles is also 32x32. The comparison of re-

construction results by different methods is demonstrated in

Figure 4. The result of our algorithm is promising, and the

fine details of the object can be clearly seen.

6. CONCLUSION

We propose an original idea to reconstruct a submerged object

distorted by moving water surface. We assume the normals of

the water surface are Gaussian distributed. The bispectrum

technique is employed to recover the phase of the true object.

Although experiments show that our approach is promising,

there exist some limits. One limit is that our algorithm needs a

large computer memory and heavy computation because that

the bispectrum of an image is four dimensional. Another limit

is the recursive phase recovery method with only a subset of

the phase information of the averaged bispectrum being used.

This may reduce the resolution of the output. To overcome

such limits is the next step in our research.
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