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ABSTRACT

Statistical estimation techniques for the wavelet-based image denois-
ing use suitable probability density functions (PDFs) as prior func-
tions for the image coefficients. Due to the intrascale dependency
of the local neighboring image wavelet coefficients, the prior func-
tions are assumed to be stationary. In this paper, it is shown that the
stationary Gram-Charlier (GC) PDF models the image coefficients
better than the traditional ones, such as the stationary Gaussian and
stationary generalized Gaussian PDFs. A Bayesian wavelet-based
maximum a posteriori estimator is then developed by using the pro-
posed GC prior function. Experimental results on standard images
show that the proposed estimator provides a denoising performance,
which is better than that of several existing denoising methods in
terms of signal-to-noise ratio and visual quality.

Index Terms— Denoising, image wavelet coefficients, Gram-
Charlier, MAP estimator

1. INTRODUCTION

Due to the compaction and decorrelation properties of the multiscale
discrete wavelet transform (DWT) coefficients [1], a great deal of
success has been achieved in the past few years for estimating a sig-
nal corrupted by additive noise using the technique of thresholding
or shrinkage of the wavelet coefficients. Improved estimation can
be achieved by taking advantage of the shift-invariance and direc-
tional properties of similar types of multiscale redundant represen-
tations, such as the shift-invariant (SI) form of the DWT [1], dual-
tree complex wavelet transform (DT-CWT) [2], curvelet, contourlet,
wedgelet, bandlet, steerable pyramid (SP) [3], matching pursuit and
basis pursuit. Almost all the statistical estimators concentrate on
choosing an appropriate probability density function (PDF) for mod-
eling the multiscale wavelet coefficients, and deriving a shrinkage
function using the minimum mean squared error or maximum a pos-
teriori (MAP) criterion. It is well-known that the PDF of the im-
age wavelet coefficients is non-Gaussian and symmetric [4]. The
standard univariate PDFs for modeling the subband image wavelet
coefficients include the generalized Gaussian (GG) [5], Bessel K-
form [4], α-stable [6], Gaussian scale mixture (GSM) [3], normal
inverse Gaussian [7] and Gauss-Hermite [8]. The image wavelet
coefficients have strong intrascale and weak interscale dependen-
cies [9]. Assuming that the image wavelet coefficients are locally
stationary, the parameters of some of the above mentioned PDFs are
refined with respect to the local spatial contexts. A number of uni-
variate PDFs have also been extended to the bivariate [6], [10] and
multivariate cases or refined in the hidden Markov tree framework to

take into consideration the interscale dependency.
In this paper, a novel statistical model is proposed for the intrascale
local neighboring image wavelet coefficients by using the station-
ary Gram-Charlier (GC) PDF. It is shown that the GC PDF matches
with the empirical one better than other standard PDFs such as the
Gaussian and the GG. An expression for the MAP estimator is then
derived assuming that local neighboring image wavelet coefficients
follow the GC PDF. It is shown that introduction of the proposed
PDF in the MAP estimation shows an improved denoising perfor-
mance as compared to that of several existing ones. The paper is or-
ganized as follows. In Section 2, the modeling of the local neighbor-
ing image wavelet coefficients by the GC PDF is presented. The sta-
tistical MAP estimator that exploits the proposed PDF is described
in Section 3. In Section 4, the performance of the proposed esti-
mator is compared with that of the existing ones. Finally, Section 5
provides conclusions.

2. GC PDF FOR LOCAL NEIGHBORING COEFFICIENTS

Let fij represent an image wavelet coefficient in the decomposition
level � at spatial location (i, j) and f represent the vector containing
all the local neighboring coefficients at that reference location. Let
pf (f ) denote the PDF of the random variable f that has a zero mean
and variance σ2

f . This PDF may be expressed in terms of the GC
density function in the form [11]

pf (f ) = G(σf )
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f and Hr(f ) is the Hermite polynomial of
order r satisfying the recurrance relation

H0(f ) = 1

H1(f ) = f

Hr+1(f ) = fHr(f )− rHr−1(f ) r ≥ 1 (2)

It is observed that the skewness of the image wavelet coefficients are
very small (S � 1). Hence, the PDF of the local neighboring coeffi-
cients can be treated as symmetric by considering S to be zero. Table
1 shows the average values ofK for the local neighboring DWT co-
efficients of the first and second level decompositions of a few test
images using the window sizes of 5× 5 and 11× 11. Note that sim-
ilar results have been obtained for K using other test images given
in the database1, but are not included here for lack of space. It can

1http://decsai.ugr.es/cvg/dbimagenes/index.php
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Table 1. The average values of kurtosis for the test images obtained
from the local neighboring DWT coefficients.

Kurtosis,K
Test image Local (5 × 5) Local (11 × 11)

� = 1 � = 2 � = 1 � = 2

Lena 3.51 4.51 4.25 6.19
Barbara 3.41 4.60 4.53 6.36
Boat 3.57 4.80 4.41 6.30
Bridge 4.08 4.10 4.71 4.44
Baboon 3.29 3.54 3.76 4.17
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Fig. 1. Gaussian and GC PDFs for modeling the local neighboring
DWT coefficients using a 7 × 7 window in the LH1 subband. Test
images are (a) Lena and (b) Barbara.

be observed from Table 1 that the kurtosis of the local neighboring
coefficients is usually greater than 3 and increases with the increas-
ing window size. Therefore, the Gaussian distribution is not a good
probabilistic model for the local neighboring coefficients. It may be
mentioned that the dependency of the local neighboring coefficients
is significant only when the window size is 5× 5 or 7× 7, and that
a further increase in the window size generally does not yield any
appreciable improvement in the denoising performance. The sym-
metric GC PDF is ensured to be positive, if 3 ≤ K ≤ 7 [12]. Ex-
tensive simulations reveal that the kurtosis of the local neighboring
coefficients for the window size of interest lies in this range. Hence,
the symmetric GC is a valid PDF for modeling the local neighboring
coefficients. Fig. 1 shows the empirical, Gaussian and GC PDFs
to model the local neighboring coefficients of the LH1 subband for
the test images Lena and Barbara using a window size of 7 × 7.
Since the images are of size 256 × 256 and the LH1 subband is
of size 128 × 128, each of the PDFs is obtained by averaging the
128× 128 = 16384 PDFs corresponding to each of the coefficients
in the LH1 subband. It is evident from Fig. 1 that the proposed
PDF matches better with the empirical one than the Gaussian PDF
does. It is to be noted that similar results are observed for other win-
dow sizes using various subbands of different test images. Table 2
shows the modeling performance of the GG and GC PDFs in terms
of the metrics Kolmogorov-Smirnov distance (KSD) and Kullback-
Leibler divergence (KLD) [11] of a few test images. It is seen from
Table 2 that both the KSD and KLD of the GC PDF are lower than
that of the GG PDF, showing that the former provides a better model
than the latter for the local neighboring coefficients. Similar results
have been obtained for the other test images. In order to demonstrate
the effectiveness of the proposed GC PDF, we consider the case of
Bayesian denoising as an application.

3. MAP ESTIMATOR FOR DENOISING

In this section, we assume that the image pixels are corrupted by ad-
ditive white Gaussian noise (AWGN) with known variance σ2

ε . If σ2
ε

Table 2. Results concerning the metrics KSD and KLD (standard
deviations in parentheses) for prior function modeling of the local
neighboring DWT coefficients using a 7× 7 window.

Prior model KSD KLD
� = 1 � = 2 � = 1 � = 2

Lena
GG PDF 0.082 0.086 0.203 (0.824) 0.352 (1.234)
GC PDF 0.072 0.080 0.179 (0.615) 0.294 (0.921)

Barbara
GG PDF 0.087 0.099 0.210 (0.960) 0.430 (1.511)
GC PDF 0.076 0.089 0.184 (0.734) 0.349 (1.132)

Boat
GG PDF 0.076 0.095 0.210 (0.815) 0.378 (1.226)
GC PDF 0.072 0.084 0.179 (0.596) 0.308 (0.925)

Bridge
GG PDF 0.077 0.080 0.263 (1.028) 0.256 (0.958)
GC PDF 0.075 0.075 0.218 (0.778) 0.209 (0.755)

Baboon
GG PDF 0.078 0.079 0.222 (1.506) 0.289 (1.574)
GC PDF 0.065 0.074 0.194 (1.295) 0.241 (1.300)

is unknown, it may be estimated by applying the median-absolute-
deviation method [13] in the HH1 subband of the noisy wavelet
coefficients. Since the noise is uncorrelated with the true image sig-
nal, the wavelet coefficient of the noisy image at the spatial location
(i, j) is given by

gij = fij + εij (3)
where εij is the wavelet coefficient of the additive noise at the ref-
erence location. We propose the MAP-based Bayesian denoising,
which is locally adaptive in nature. In a Bayesian framework, gij ,
fij , and εij in (3) are considered as samples of the independent ran-
dom variables g, f , and ε, respectively. The random variable f

is modelled by symmetric GC PDF, and ε by Gaussian PDF. The
Bayes-risk estimator for the denoised wavelet coefficient f̂ij using
the MAP criterion is given by [10]

f̂ij(g) = arg max
f

�
− (g − f )2

2σ2
ε

+ ln pf (f )

�
(4)

Using the approach proposed by Hyvarinen [14], an approximate
solution of (4) can be obtained as

f̂ij(g) = sign(gij) max
�
|gij | − σ2

ε |Φ(g)|, 0
�

(5)

where Φ(f ) = − d
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�
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�
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The proposed MAP estimator requires that the variance and kurtosis
of the noise-free wavelet coefficients be calculated from the noisy
condition. In other words, it is necessary to estimate the second
and fourth order moments of the noise-free image coefficients from
the noisy coefficients. Since the image is corrupted by AWGN, the
second and fourth order moments can be estimated as

M̂2f = max(M̂2g − σ2
ε , 0)

M̂4f = max(M̂4g − 6M̂2f σ2
ε − 3σ4

ε , 0) (7)

where M̂2g and M̂2g , respectively, are the second and fourth order
sample moments [11] of the noisy wavelet coefficients.
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Table 3. Output PSNR, 20 log10(255/σe) in dB, where σe is the er-
ror standard deviation, for different locally adaptive denoising meth-
ods that use the decimated DWT

Denoising algorithms Noise standard deviation σε

10 15 20 25 30
Lena

BivariateShrink [10] 34.47 32.63 31.30 30.30 29.49
LAWMAP [15] 34.35 32.40 31.06 30.02 29.22
NeighShrink [16] 34.46 32.52 31.04 29.88 28.88
ProbShrink [17] 34.30 32.41 31.05 30.02 29.25
GSM [3] 34.57 32.72 31.41 30.36 29.57

Proposed method 34.67 32.84 31.55 30.52 29.75
Barbara

BivariateShrink [10] 32.69 30.35 28.75 27.58 26.63
LAWMAP [15] 32.58 30.27 28.73 27.60 26.72
NeighShrink [16] 32.86 30.44 28.78 27.53 26.54
ProbShrink [17] 32.51 30.10 28.50 27.31 26.38
GSM [3] 32.84 30.44 28.81 27.68 26.72

Proposed method 33.00 30.62 29.02 27.90 26.96
Boat

BivariateShrink [10] 32.48 30.61 29.28 28.24 27.40
LAWMAP [15] 32.36 30.48 29.09 28.07 27.16
NeighShrink [16] 32.72 30.64 29.15 28.05 27.08
ProbShrink [17] 32.53 30.57 29.17 28.10 27.27
GSM [3] 32.78 30.83 29.44 28.38 27.52

Proposed method 32.76 30.82 29.44 28.40 27.56
Bridge

BivariateShrink [10] 30.41 27.93 26.40 25.33 24.58
LAWMAP [15] 30.42 28.06 26.58 25.55 24.77
NeighShrink [16] 30.35 27.91 26.36 25.31 24.50
ProbShrink [17] 30.14 27.75 26.27 25.25 24.50
GSM [3] 30.31 27.83 26.37 25.34 24.58

Proposed method 30.47 28.01 26.57 25.55 24.81

4. EXPERIMENTAL RESULTS

Extensive experimentations have been carried out for comparing the
performance of the proposed denoising method with that of the oth-
ers. Due to the limitation of space, however, we give in this section
results concerning four 512 × 512 grayscale images, namely, Lena,
Barbara, Boat, and Bridge and two types of wavelet representations,
namely, the decimated DWT and redundant DT-CWT. The test im-
ages are obtained from the same sources as mentioned in [3]. The
DWT-based experiments use the orthogonal Daubechies-8 wavelet
filter and the DT-CWT-based ones use the (11, 17)-tap biorthogonal
filters at level � = 1, and 6-tap Q-shift orthogonal filters for � ≥ 2,
which have been proposed in [2]. The proposed method is applied on
the coefficients of the 4-level DWT and 3-level DT-CWT, since any
further decomposition level does not produce a significant increase
in the denoising performance.
We evaluate the performance of the proposed method by comparing
it with that of five other locally adaptive wavelet-based denoising
methods, namely, the BivariateShrink [10], locally adaptive window-
based MAP (LAWMAP) [15], NeighShrink [16], ProbShrink [17]
and GSM [3]. The first one is an example, wherein both the inter-
and intrascale dependencies are taken into account. The second,
third, and fourth methods inherently use only the intrascale depen-
dency. In the case of the fifth, we provide the results obtained from
the intrascale dependency only in order to make a fair compari-
son with our proposed method. The results for the BivariateShrink
method are obtained using the codes provided by I. Selesnick2, the
ProbShrink method using the codes provided by A. Pizurica3 and
the GSM method using the codes provided by J. Portilla4. We re-

2http://taco.poly.edu/selesi/index.html
3http://telin.ugent.be/∼sanja/
4http://decsai.ugr.es/∼javier/index.html

port the results provided by our proposed denoising method using a
7 × 7 window, since this window size provides the highest output
peak signal-to-noise ratio (PSNR) in most of the cases. The window
sizes and parameters for the other five methods mentioned above are
chosen to produce the maximum output PSNR.
Table 3 shows the output PSNR values obtained from the various
denoising methods that use the decimated DWT for the four test
images considered here. From the tabular results, it can be ob-
served that except for two instances of the GSM method [3] in the
Boat image, the proposed method always provides the highest out-
put PSNR values. Further, for these two instances, the proposed
method provides the PSNR values of about the same level as that
provided by the GSM method. Fig. 2 shows the original cropped
image of Barbara along with its noisy version with σε = 20, and
the decimated DWT-based denoised versions provided by the Bivari-
ateShrink method [10], ProbShrink method [17], GSM method [3]
and proposed method. From this figure, it can be observed that
the proposed method reduces the noise significantly with the least
amount of artifacts (e.g., in the eyes and scarf of Barbara) as com-
pared to the other methods. It is to be noted that the proposed method
is computationally very fast. For example, in a 3 GHz and 512 MB
machine, the processing time of the proposed method is 1.6 seconds,
while that of the GSM method [3] and ProbShrink method [17] are
12.7 and 14.2 seconds, respectively.
Table 4 shows the output PSNR values obtained from various denois-
ing methods using the different types of redundant representations of
the DWT. The ProbShrink method [17] uses the SI form of the DWT,
the BivariateShrink method [10] and the proposed method use the
DT-CWT, and the GSM method [3] uses the SP. It can be observed
from the table that the proposed method always provides higher
PSNR values than that provided by the BivariateShrink method [10]
and the ProbShrink method [17]. Except for the Bridge image, al-
though the GSMmethod [3] provides a small amount of higher PSNR
values than that provided by the proposed one, the computational
burden of the GSM method [3] that uses the SP is not insignificant.
Specifically, the redundancy of the three types of wavelet transform
that have been considered here, namely, the SI form of the DWT [5],
the DT-CWT [2], and the SP [3] are, respectively, 4L : 1, 4 : 1,
and (7ηo/3) : 1, where L is the total number of wavelet decom-
positions and ηo is the total number orientations (the GSM method
in [3] uses ηo = 8) in the SP. Hence, the proposed method enjoys a
reduced amount of computational complexity by a factor of 7ηo/12,
while providing a PSNR performance comparable to that of the GSM
method.

5. CONCLUSION

In this paper, we have proposed the Gram-Charlier PDF for the prob-
abilistic modeling of the local neighboring image wavelet coeffi-
cients. It has been shown that the proposed PDF provides a better
match to the empirical one than that provided by some of the tradi-
tional PDFs, such as the stationary Gaussian and the stationary GG.
The proposed PDF is then used to design a Bayesian MAP estimator
for the wavelet-based image denoising. The experimental results on
standard images have shown a superior performance of the proposed
estimator over several existing denoising methods.
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