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ABSTRACT
This paper presents a novel approach based on the unscented
Kalman filter (UKF) for image estimation in film-grain noise.
The image prior is modeled as non-Gaussian and is incorpo-
rated within the UKF frame work using importance sampling.
A small carefully chosen deterministic set of sigma points is
used to capture the prior and is propagated through film-grain
nonlinearity to compute image statistics. Experimental results
are given to demonstrate the efficacy of the proposed method.

Index Terms— Film-grain noise, Unscented Kalman fil-
ter, Markov random fields, Importance sampling.

1. INTRODUCTION

Image estimation refers to estimating an original image from
its degraded observation. When the observation is linearly re-
lated to state, and the modeling errors are Gaussian, then the
Kalman filter provides an optimal estimate of the state. But in
practice, an image sensor can possess nonlinear characteris-
tics. One such example is the photographic film in which the
film density is related linearly to the logarithm of the exposure
(given by the D - log E curve of the film). Film-grain noise
manifests itself as multiplicative non-Gaussian noise in the
exposure domain. Among earlier works on film-grain noise
removal, Andrews et al. [1] expanded the nonlinear obser-
vation model into a Taylor series expansion about the mean
of the observed image and derived an approximate filter for
recovering the original image. Naderi and Sawchuk [2] pro-
posed a signal-dependent model for film-grain noise and de-
velop an adaptive Wiener filter based on the non-stationary
first-order statistics of the image. Tekalp et. al. [3] pro-
posed a modified Wiener filter (MWF), assuming the noise
to be wide sense stationary and incorporating the sensor non-
linearity into the restoration procedure. They demonstrated
improvements over the linear Wiener filter. Ibrahim and Ra-
jagopalan [4] recently proposed a particle filter (PF) based
approach for image restoration in film-grain noise. Because
it works by propagating particles, the PF is computationally
quite intensive.

In this paper, we propose an importance sampling based
unscented Kalman filter (UKF) for film-grain noise removal
which is not only computationally efficient but also performs
very well. Image estimation based on the traditional auto-
regressive (AR) model often results in smoothed edges. We
adopt a discontinuity adaptive markov random field model to
encode the statistical dependence among the neighboring pix-
els but with edge preserving capability. We employ impor-
tance sampling to estimate the statistics of this non-Gaussian
prior and propagate them to the update stage of the UKF.

1.1. Problem formulation

Photographic film is a widely used image recording medium.
In addition to grainy appearance, film-grain noise in photo-
graphic films poses a serious limitation for compressing old
archival movies. In this paper, we pose the problem of image
recovery in film-grain noise as an image estimation problem.
In the density domain, the degraded image can be modeled as
a logarithmic nonlinearity of the original image corrupted by
additive white Gaussian noise. i.e.,

rd(m, n) = α log10(s(m, n)) + β + v(m, n) (1)

where s is the original image, rd is the degraded observation
in density domain, noise v is additive white Gaussian with
zero mean and variance σ2

v while parameters α and β are the
slope and offset of the D − log E curve of the film. Alter-
natively, we can write an equivalent linear model with the
noise being multiplicative and non-Gaussian in the exposure
domain. i.e.,

re(m, n) = s(m, n)(10v(m,n)/α) (2)

Here, re is the degraded observation in the exposure domain,
and rd and re are related as rd = α log10(re) + β. The prob-
lem of image estimation is to compute s given rd or re.

2. UNSCENTED KALMAN FILTER

In the recent past, there has been excellent success in 1-D
nonlinear filtering by employing the UKF [5, 6, 7]. The UKF
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proposed by Julier and Uhlmann [5] not only outperforms the
extended Kalman filter (EKF) in implementation ease and ac-
curacy but has also been observed to be more stable. The
UKF is a straight forward application of the scaled unscented
transformation to recursive minimummean-square-error esti-
mation [6].

2.1. Unscented Transformation

The Unscented transformation (UT) is founded on the intu-
ition that it is easier to approximate a probability distribu-
tion than it is to approximate an arbitrary nonlinear func-
tion or transformation [5, 6]. The UT is a method for cal-
culating the statistics of a random variable which undergoes
a nonlinear transformation. Consider propagating a nx di-
mensional random variable x through an arbitrary nonlinear
function g : Rnx→Rny to generate y, i.e., y = g(x). As-
sume x has mean x and covariance Px. To calculate the statis-
tics (first two moments) of y using the scaled UT, we pro-
ceed as follows: First, a set of 2nx + 1 weighted samples
or sigma points Si = {Wi,Xi} are deterministically cho-
sen so that they completely capture the true mean and co-
variance of the prior random variable x. A selection scheme
that satisfies this requirement is given in [6, 7]. Each sigma
point is now propagated through the true nonlinear function
Y i = g(X i), i = 0, 1, ....., 2nx and the estimated mean and
covariance of y are computed as y =

∑2nx

i=0 W
(m)
i Yi, Py =∑2nx

i=0 W
(c)
i (Yi − y)(Yi − y)T . The estimates of the mean

and covariance are accurate to second order (third order for
Gaussian priors) [5] of the Taylor series expansion of g(x) for
any nonlinear function.

2.2. UKF for film-grain noise removal

It is well known that an image can be modeled as a 2-D au-
toregressive (AR) process. The corresponding AR equation
can be written as a state transition equation in the form

x(m,n) = Fx(m,n−1) + u(m,n) (3)

where x(m,n) is the state vector and F is the state transition
matrix. In the Kalman filtering frame work, there are two
occurrences where we want to propagate the state variable
through the transformation. One is in predicting the new state
from the past and the other is while obtaining the observation
from the predicted state. If either the state or the measure-
ment model is non linear, we can make use of the unscented
transformation which leads to the UKF [5, 6, 7].
Film-grain noise is multiplicative and non-Gaussian in the

exposure domain. We first propose a UKF based image esti-
mation algorithm. For non-Gaussian/multiplicative noise, the
state random variable (RV) must be augmented with the noise
variables: xa

(m,n) = [xT
(m,n)u

T
(m,n)v

T
(m,n)]

T (having dimen-
sion na). The scaled UT sigma point selection scheme [6]
is applied to this new augmented state RV (assuming some

initial mean and covariance for the state and known noise
statistics) to calculate the corresponding sigma matrix Xa =
[(Xx)T (Xu)T (X v)T ]T . These sigma points are propagated
according to the state equation1Xx

n/n−1 = f(Xx
(m,n−1),Xu

(m,n−1))
and the measurement equationYn/n−1 = h(Xx

n/n−1,X
v
(m,n−1))

where
f(Xx,Xu) = FXx +

[
XuT 0T 0T

]T

and h(Xx,Xv) =

HXx.∗10.(Xv/α) Here ‘.’ denotes point-wise operation. Since
we do not assume any blurring, H = [1 0 0]. The required
means and covariances can be computed from the sigma points
in each recursive filtering step [6, 7]. The UKF algorithm that
updates the mean and covariance of the Gaussian approxima-
tion to the posterior distribution of the states [6, 7] can be
employed to estimate the image.
Though, typically an AR model is used to model the im-

age, it cannot account for sudden changes in the image such
as edges. Also, an accurate identification of the AR param-
eters is difficult. Moreover, it cannot incorporate contextual
constraints effectively. We now improve the filter by incorpo-
rating a non-Gaussian prior within the UKF framework.

3. NON-GAUSSIAN PRIOR

As against the linear dependence in AR models, Markov ran-
dom fields (MRF) [8] provide better flexibility in incorporat-
ing statistical dependence along with edge preservation. Con-
sider a 1-D signal e that is to be estimated. Let e(n) denote
the nth derivative of e. A potential function y(e(n)(x)) quan-
tifies the penalty against the irregularity in e(n−1)(x) and cor-
responds to prior clique (a set of connected pixels) poten-
tials in MRF models [8]. Let η = e′(x). The magnitude
|y′(η)| = |2ηt(η)| is the strength with which the regularizer
performs smoothing, where t is the interaction function. A
necessary condition for any regularization model to be adap-
tive to discontinuities [8] is

lim
η→∞

|y′(η)| = lim
η→∞

|2ηt(η)| = A (4)

where A ≥ 0 is a constant. The above condition with A = 0
completely prohibits smoothing at discontinuities as η → ∞
whereas with A > 0 it allows limited (bounded) smoothing.
For a standard quadratic regularizer, y(η) = η2 and the

state PDF is exp(−η2). An MRF with such a quadratic reg-
ularizer is referred to as Gaussian MRF (GMRF). For this
regularizer, the smoothness strength increases linearly with η
which inevitably leads to over-smoothing of edges. A better
way to handle the situation is to use a non-Gaussian condi-
tional density function to model the original image.
Following [8, 9], we propose to use the interaction func-

tion tγ(η) = 1

1+ η2

γ

. For this choice of tγ(η), the smooth-

ing strength |ηtγ(η)| increases monotonically as η increases
1In the following n/n − 1 is used to denote (m, n)/(m, n − 1) for

convenience of presentation

IV - 18



within a band Bγ = (−√γ,
√

γ). Outside the band, smooth-
ing decreases and becomes zero as η→∞. Since this en-
ables to preserve image discontinuities, it is called a disconti-
nuity adaptive MRF. The resulting state conditional density
is non-Gaussian and is of the form p(z) = exp(−yγ(η))

where yγ(η) = γ log(1 + η2

γ ) is the corresponding potential
function. For a first-order non-symmetric half plane (NSHP)
support, η2(z) = ((z − z1)

2 + (z − z2)
2 + (z − z3)

2 +
(z − z4)

2)/2ρ2 where z corresponds to the pixel to be es-
timated, pixels z1, z2, z3, z4 have been previously estimated
in the NSHP support, and ρ controls the variation between
neighboring pixel values.

3.1. Importance sampling

To incorporate a non-Gaussian prior within the UKF frame-
work, we need to estimate the moments under the non-Gaussian
PDF p(z). For this we use a Monte Carlo approach known as
importance sampling [10]. The main idea of importance sam-
pling can be briefly explained as follows:
When it is difficult to draw samples from the target PDF

p, we draw L samples, {z(l)}L
l=1 from another PDF q that

roughly approximates p, and is known upto a multiplication
constant. We use samples from the sampler PDF q to deter-
mine any estimates under p. In the regions where q is greater
than p, the estimates are over-represented. In the regions
where q is less than p, they are under-represented. To account
for this, we use correction weights wl = p(z(l))

q(z(l))
in determin-

ing the estimates under p. For example, to find the mean of
the distribution p we use μ̂p =

P
L
l=1 wlz(l)

P
L
l=1 wl

. As L → ∞ the
estimate μ̂p tends to the actual mean value of p.

4. THE PROPOSED FILTER

In this section, we present a recursive algorithm for film-grain
noise removal by extending the basic structure of the UKF
discussed in section 2 to include a non-Gaussian prior.

1. At each pixel, construct the state conditional PDF using
the past pixels in the NSHP support, and the values of
ρ and γ in the MRF model (as discussed in section 3).
P (s(m, n)/ŝ(m− i, n− j))

= exp
(
−γ log

(
1 + η2(s(m,n))

γ

))
where 0 ≤ i, j ≤ M and M is order of the NSHP
support.

2. Obtain the mean and covariance of the above PDF using
importance sampling (Section 3). Draw samples {zl},
l = 1, 2, ..., L from a Cauchy sampler2 q. The samples
are weighted by wl = p(zl)

q(zl)
. The mean μ̂p and variance

σ̂2
p of p are computed as

μ̂p =
P

L
l=1 wlz

(l)

P
L
l=1 wl

and σ̂2
p =

P
L
l=1 wl(z

(l)
−bμp)2P

L
l=1 wl

2Cauchy sampler is employed to benefit from its heavy tailed distribution
[10]

3. These estimates are directly used to obtain the one-step
ahead predicted sigma points as follows:

xn/n−1 = μ̂p and Pn/n−1 = σ̂2
p.

xa
n/n−1 = [xT

n/n−1 0]T , Pa
n/n−1 =

[
Pn/n−1 0
0 σ2

v

]

• Calculate sigma points:
Xa

n/n−1 = [xa
n/n−1,

xa
n/n−1 ±

√
(na + λ)Pa

n/n−1]

Yn/n−1 = h(Xx
n/n−1,X

v
(m,n−1))

yn/n−1 =
∑2na

i=0W
(m)
i Y i,n/n−1

• Measurement update is the same as in UKF [6, 7]
ŝ(m, n) = x(m,n)

Here, (
√

(na + λ)Px) is the matrix square root, λ is a
scaling parameter,Xa = [(Xx)T (X v)T ]T and h(Xx,Xv) =
Xx.∗10.(Xv/α). Observe that the mean and variance obtained
by importance sampling of the non-Gaussian prior are used
to generate the sigma points. They are propagated through
the true non-linearity and are taken to the update step of the
unscented Kalman filter to determine image estimates.

5. EXPERIMENTAL RESULTS

In this section, we present results obtained using the proposed
filter and compare them with MWF and PF. In synthetic im-
ages, for a quantitative comparison, we use improvement-in-
signal-to-noise-ratio (ISNR) which is defined as ISNR =

10 log10

(P
m,n(sdeg(m,n)−s(m,n))2P

m,n(bs(m,n)−s(m,n))2

)
dB.Here, (m, n) are over

the entire image, sdeg(m, n) is the exposure domain degraded
image pixel and ŝ(m, n) represents the estimated image pixel.
Fig. 1(a) shows the Peppers image. It is degraded by

film-grain noise (Eq. 1) and is shown in the exposure domain
(Fig. 1(b)).The image recovered by the MWF is shown in
Fig. 1(c). We note that a considerable amount of noise is
left unfiltered (visible on uniform gray backgrounds). The PF
improves noise reduction significantly but is slightly blurred
(Fig. 1(d)). The proposed method performs the best both in
terms of noise reduction and preservation of edges (Fig. 1(e)).
This is also reflected in its high ISNR value.
Fig. 2(a) shows an image with real film-grain noise. The

image obtained by MWF (Fig. 2(b)) leaves residual noise on
the face. The image obtained by PF (Fig. 2(d)) blurs finer de-
tails such as the lips, the ear and the hair. The image estimated
by the proposed filter is shown in Fig. 2(f). It has very sharp
edges, has almost no grains and all the facial details are pre-
served. Also, the image obtained with the proposed method
has the best visual and natural appearance. On a Pentium 4
PC with 256 MB RAM for a 200 × 200 image PF with 200
samples requires 150 seconds where as the proposed ISUKF
executes in 20 seconds.
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(a)

(b) (c)

(d) (e)

Fig. 1. Peppers image (a) Original. (b) Degraded (σ2
v = 0.1).

Estimated image using (c) MWF (ISNR = 2.98 dB), (d) PF
(ISNR = 4.12 dB) and (e) Proposed (ISNR = 4.92 dB).

6. CONCLUSIONS

In this paper, we have proposed a discontinuity adaptive un-
scented Kalman filter for film-grain noise removal. The exact
exposure domain relation is used as the observation model
for the UKF. This is further improved by incorporating a non-
Gaussian prior through importance sampling. The improve-
ment obtained over existing filters is demonstrated with both
synthetic and real examples.
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