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ABSTRACT 

A novel spatio-temporal method is proposed for film dirt 
detection and recovery. Firstly, a more reliable confi-
dence measurement of dirt is extracted for color films. 
False alarms caused by motion are filtered using consis-
tency checks among several measurements. Then, candi-
date dirt is detected by filtering and thresholding this 
confidence measurement. Finally, bi-directional local 
motion compensation and ML3Dex filtering are taken for 
the recovery of dirt pixels. Experiments on real data 
demonstrate the efficiency and effectiveness of our 
method in terms of both detection and recovery of dirt.  

Index Terms: film dirt detection, archive restoration, 
spatio-temporal filtering, missing data recovery. 

1. INTRODUCTION 

Archive restoration of degraded films in the digital do-
main has recently attracted lots of interest [1-5, 10-11], 
and several high-profile projects have received EU fund-
ing, such as AURORA, BRAVA and more recently Pres-
toSpace. In general, dirt is among the most common im-
pairments in archived films, which occur when dust or 
other material adheres to the film due to electrostatic ef-
fects, or when the film is passed through various trans-
port mechanisms [1-3]. Usually dirt only lasts for one 
frame, appearing mostly as dark or bright opaque spots of 
random size, shape and location.  

Depending on whether the recovery process is applied 
exclusively to dirt pixels or not, existing methods can be 
characterised as one- and two-pass. The former utilize 
global filtering of frame images to recover dirt thus it has 
the potential to over-smooth non-dirt pixels as well. The 
latter usually has a detection process to identify candidate 
dirt pixels such that the reconstruction algorithm will 
concentrate on these areas and reduce errors induced dur-
ing recovery [1, 3].  

For dirt detection, we have three further classes, 
namely spatial, temporal and spatio-temporal. Spatial 
processing involves only intra-frame information, i.e. a 
local neighborhood for each missing pixel [7-8]. Using 
recursive median filtering and several rules, they fail to 

recover large or fast moving dirt and generate many false 
alarms [5]. In temporal processing inter-frame informa-
tion from several neighboring frames is used and in each 
frame only one corresponding pixel is treated by compar-
ing motion compensated errors against one or more 
thresholds [1-2]. Spatio-temporal processing is a combi-
nation of the above two, such as the rank-order-detector 
(ROD) [4] and soft morphological filtering [3].  

After detection, “interpolation” in spatial and/or tem-
poral domain(s) is usually employed for the recovery of 
missing data. In Kokaram et al [1], ML3Dex filtering, 
MRF and AR interpolation are used. Again, the perform-
ance of these three methods depends on accurate motion 
compensation. In [9], global motion compensation and 
coherence-based search are employed for adaptive recov-
ery of missing data using temporal or spatial interpola-
tion. This approach does not perform well in the presence 
of complex motion and only thin-line structure like 
scratches can be corrected. In addition, some model-
based methods have also been introduced using Markov/ 
Gibbs random fields or autoregressive modelling in both 
detection and recovery of missing data [1]. However, 
these methods may fail if accurate motion compensation 
cannot be achieved. 

In this paper, we propose a spatio-temporal method 
for detection and recovery of dirt in degraded colour 
films. Firstly, we present a dirt detection scheme suitable 
for colour images, which is effective even when motion 
compensation fails owing to similar luminance but dif-
ferent colours. Secondly, a confidence measurement is 
extracted, which is helpful in both detection and recover-
ing of dirt. Thirdly, false alarms caused by motion are 
avoided by consistency checks among several measure-
ments. Finally, local motion estimation and compensa-
tion is selectively applied to candidate dirt regions for 
computational efficiency.    

2. DIRT DETECTION AND RECOVERY  

Confidence measurement of dirt was firstly introduced by 
us in [5]. Nevertheless our approach ultimately proved 
sensitive to false alarms caused by scene motion and 
moreover could only detect small size dirt. Here we over-
come these shortcomings and also avoid overdependency 
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on thresholding. In addition, we apply local motion esti-
mation and compensation for the recovery of dirt pixels.  

2.1. Extended confidence measurement of dirt  

Let −nf  and +nf  be two neighboring frames of nf , 
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maximum value among the three colour components in 
nf . This is based on a reasonable assumption that dirt 

pixels should appear in grey in colour sequences thus the 
maximum component is more accurate to represent its 
energy. Two elementary differences, −nd  and +nd , is 
then defined as 
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As dirt is a temporal impulse, consistent differences 
are expected: A more close −nd  and +nd  stands for a 
more likely dirt, and vice versa. If both −nd  and +nd  are 
negative or positive, this relates respectively to dark or 
bright dirt pixels. 

In Kokaram [1] and Schallauer et al [2], dirt is de-
tected by comparing absolute differences between com-
pensated frames with some given threshold(s). A poor 
choice of threshold may lead to irrecoverable loss of in-
formation. Instead we extract a confidence measurement 
in a similar way as defined in [5]. We additionally define 
a combined measurement of −nd  and +nd  in (2), and we 

also define 0=nD if 0≤+− nn dd .  
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where ]1,0[∈λ  is a parameter to weight these two ele-
mentary differences. It is apparent that the definition in 
[5] is a special case of (1) where .2/1=λ

With )(λnD , a confidence measurement of dirt can 
be obtained in the same way as defined in [5] and [10]. 
To remove noisy measurements, median filtering is ap-
plied to this confidence image, and the result is denoted 
as )(λnConf , and dirt pixels are further determined by 
thresholding this confidence measurement.  

Figure 1 shows one color image (with main dirt areas 
marked in white boxes) and different confidence images 
extracted from this color image and its corresponding 
grey image with or without median filtering. For com-
parison, the corresponding objective ground truth (GT) is 
also given. This GT is obtained by infrared scanning of 

original films, which is then thresholded to generate a 
binary mask as shown in Figure 1(d). The results from 
(b) to (c) are extracted from luminance component (or 
grey source), as used in [5], and they are less accurate 
than those from color components in (e) and (f). More-
over, median filtering seems overall useful towards re-
moving false alarms and improving accuracy. 

           (a)                              (b)                              (c) 

            (d)                             (e)                            (f) 
Figure 1: One color image (a) and its ground truth map of dirt 
(d) and confidence of dirt extracted from grey image (b) and 
from color image (e). (c) and (f) and results after median filter-
ing of (b) and (e), respectively.  

2.2. Avoiding false alarms caused by motion 

Since nD  varies with λ  an unsuitable value for λ
may lead to many false alarms (caused by motion). As a 
result, nConf  and detection efficiency also rely on λ .   

If dirt pixels lie within a static background, this is an 
idealized case where we have +− = nn dd  and also a local 
maximum value of nD . Consequently, in this case no 
false alarms will occur. 

If the moving area has near-constant illumination or 
color (especially around dirt pixels), which is mostly true 
owing to piecewise smoothly-varying intensity in natural 
scenes, then this case is not much different than the ide-
alized one and so false alarms can also be avoided.  

Regarding other cases, as dirt pixels are motion-
independent, we expect their confidence measurements to 
be insensitive to the change of λ . Consequently, we 
choose three values for λ , i.e. 0.1, 0.5 and 0.9, and take 
pixels of consistently high confidence measurements in 
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the corresponding three confidence images as real candi-
dates, otherwise we consider them as false alarms. 

2.3. Recovering dirt pixels  

To recover missing data due to dirt, motion estimation 
and compensation are required. Let ),(1 −−− jif n  and 

),(1 +++ jifn  be two motion-compensated pixels corre-
sponding to the missing data of ),( jif n . A simple method 
was introduced in [2] taking the average of ),(1 −−− jif n

and ),(1 +++ jifn  as an estimate of ),( jifn . In [1], a two-
stage median filtering, ML3Dex, was employed, as 
shown in Figure 2, to recover ),( jifn :  

=

∈=

],,,,[),(
}5,4,3,2,1{][

54321 zzzzzmedianjif

lWmedianz

n

ll
    (3) 

Figure 2: Five sub-filter masks (W1 to W5) defined in 
ML3Dex for missing data recovery in [1].

For each candidate region of dirt knR , , a larger rec-

tangular region knS ,  is defined using an enlarged outer 

boundary of knR ,  satisfying (4), where |.|  denotes cardi-

nality i.e. number of pixels within a region. 

||3||, ,,,, knknknkn RSSR ≥⊂   (4) 

Meanwhile, for each knS , , two corresponding regions 

are defined in 1−nf  and 1+nf  as knS ,−  and knS ,+ . These 

occupy the same the spatial location in each of the three 
consecutive frames. Then, forward and backward local 
motion estimation and compensation are employed be-
tween knS ,−  and knS , , knS ,+  and knS , , respectively. Af-

terwards, ML3Dex filtering is utilised. Please note that 
both motion estimation and ML3Dex filtering are only 
applied to dirt areas, rather than the whole image, for ef-
ficiency and avoiding over-smoothing of image details. 

3. RESULTS AND DISCUSSION  

3.1. Detection results 

We compare the performance of our method against sev-
eral well-established approaches in the literature. For de-
tection, four other methods are considered including 

ML3Dex [1], LUM [8], SDIp [1] and ROD [4]. The 
threshold in the first three methods is set as 10, and the 
three thresholds used for ROD are 5, 10 and 15. In LUM, 
a spatio-temporal 333 ××  window with 27=N , and 

9=k  was used. In SDIp, ROD and ML3Dex, motion es-
timation and compensation is applied by using the Black-
Anandan optical flow algorithm [6], which is also used 
for local motion compensation in our approach.  

    (a) SDIp           (b) ROD            (c) ML3Dex         (d) LUM              
Figure 3: Detected dirt for the source image in Figure 1(a) 
using SDIp, ROD, ML3Dex and LUM.  

Global ROC curve of  "Lady and doll" sequence 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e
SDIp

ROD

ML3Dex

LUM

Our
method

Figure 4: ROC comparison for several methods for test image 
in Figure 1(a) using SDIp, ROD, ML3Dex, LUM and our 
method.

Using objective ground truth (GT) maps, a quantita-
tive performance assessment is possible by computing of 
Receiver Operating Characteristics (ROCs). By counting 
correctly detected or missed dirt pixels between the dirt 
mask and the GT map, true positive detection rate, tpR

and false positive detection rate, fpR , are computed. Fig-
ure 4 demonstrates an average ROC curve for 80 con-
secutive frames. Greylevel GT data were thresholded at 
level 85 to generate a binary mask. In Figure 4, it can be 
clearly seen that our method outperforms all others when 
false positive rate is more than 0.1%. Although SDIp and 
ROD occasionally yield better higher true positive rate 
when a much lower false positive rate (say less than 
0.1%) is required, they are less efficient because they 
need bi-directional motion estimation and motion com-
pensation over the whole image. 

3.2. Reconstruction results 
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In this set of experiments, ML3Dex filtering is applied to 
the whole image and also to detected dirt masks for miss-
ing data recovery. In Figure 5, results on global filtering 
as well as local filtering on the dirt masks from SDIp and 
our method are compared. For better visualization pur-
pose, the source image and reconstructed images are con-
trast enhanced. In the enhanced image, we can easily 
identify dirt areas and compare the performance from dif-
ferent methods. From Figure 5 we can see that our 
method generates comparable results to global ML3Dex 
filtering while local ML3Dex fails to reconstruct all the 
missing data owing to incomplete masks of dirt detected. 

        (a)                       (b)                     (c)                     (d)  
Figure 5: Contrast-enhanced section of test image (a) and re-
constructed images using ML3Dex applied to SDIp detection 
(b), whole image (c) and our method (d).  

Figure 6 shows another reconstruction example in 
which dirt is marked within a grey rectangle in Fig 6(a). 
Although our method fails to detect and also recover sev-
eral boundary pixels of the dirt area, it has preserved well 
most of the details and avoids over-smoothing caused by 
global ML3Dex filtering (see regions between fingers).   

                (a)                            (b)                                (c)  
Figure 6: Contrast-enhanced section of test image (a) and re-
constructed images using global ML3Dex filtering (b) and our 
local filtering (c).

Finally, our method is more efficient as bi-directional 
motion estimation and compensation is only employed to 
candidate dirt regions. Dirt pixels normally occupy no 
more than 1% of the whole frame area, hence we provide
a good balance between accuracy and efficiency. 

4. CONCLUSIONS  
A spatio-temporal method was presented for dirt detec-
tion and recovery in dirt-impaired archived film material. 

We demonstrated that confidence measurement of dirt 
extracted from color channels in our approach is more 
accurate and robust relative to greylevel information 
only. This confidence measurement was shown to be use-
ful for dirt detection. Results from real dirt samples of 
degraded films show that our algorithm performs well in 
terms of accuracy, robustness and efficiency and com-
pares favorably with competing approaches in the field. 
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