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ABSTRACT

The theory of steerable filters (introduced by Freeman and

Adelson in 1991) offers a convenient and computationally ef-

ficient method to represent the rotation of a specific class of

2D filters as a linear combination of base filters. In this pa-

per, we generalize this theory to filters which are modeled as

point-by-point products of multiple (in our examples: two)

base filters which each are rotated by individual rotation an-

gles, thus introducing the term “multi-steerability”.

While standard steerable filters are useful for the detec-

tion of edges or lines (oriented in some unknown direction),

our novel extended theory can be applied to the detection of

features which are characterized by multiple orientations, for

instance corners or line crossings, which greatly increases the

applicability of the theory. We conclude our paper with an

example for detecting the crossings in a checkerboard image

using double-steerable filters.

Index Terms— steerable filters, feature detection, orien-

tation estimation

1. INTRODUCTION

Filtering an image with a set of rotated filter kernels is an

important low level vision problem, applicable to a variety

of different applications such as feature tracking, edge detec-

tion, image enhancement or texture analysis. The steerable
filters approach developed by Freeman and Adelson [1] al-

lows a convenient and fast implementation for such rotated

filters, namely as a weighted sum of a limited number of lin-

ear base filters.

1.1. A general view on steerability

The special elegance of the steerable filter approach comes

with the fact that the whole dependency on the rotation angle

is encapsulated in the weighting coefficients (also termed “in-

terpolation functions”), thus giving a linear representation for

the non-linear action of rotation.

The obvious price one has to pay is the fact that not all

possible filter kernels are steerable. However, the class of

filters which can be steered contains many filters which are

relevant for image analysis. In their seminal paper introduc-

ing steerable filters [1], Freeman and Adelson have already

shown that all filters h which can be represented in polar rep-

resentation as

h(r, φ) =
N∑

n=−N

an(r) ejnφ (1)

are steerable. Equation (1) is a Fourier series of order N in

the angular function with weight coefficients an(r) that are

allowed to depend on the radius r. In other words, a filter

is steerable if the number of Fourier coefficients is limited.

This is the underlying reason why it is possible to synthesize

any arbitrary rotation from a linear combination of a limited

number of base filters, and additionally, the minimal number

of base filters can be shown to be the number of non-zero

Fourier coefficients.

In practice, however, several different ways of designing

steerable filters exist. This is due to the fact that some authors

desire Cartesian (i.e. xy) separable filters only (even if this

usually goes at the expense of obtaining more than the mini-

mal number of base filters [1, 2]). Other authors optimize for

phase-invariant behavior, that is, a similar (ideally: equal) fil-

ter response energy for both line and edge structures [3]. An

important example for this approach are the steerable wedge

filters introduced by Simoncelli et al. [4, 5].

The basic idea of steerable filters, namely representing a

potentially complicated non-linear operation such as rotation

as a linear combination of basic operators (which can be ap-

plied in a preprocessing step), can also be found for shearing,

multiscale approaches or combination of such ideas which

lead to the generic term deformable filters introduced in [6, 7].

Some authors like Michaelis and Sommer [8] and later Teo

and Hel-Or [9] have even considered embedding the approach

behind steerable filters in a Lie group theory framework. All

these ideas have in common that the set of allowed operators

must be reduced to a class which can actually be modeled as

a weighted linear combination of a limited number of specific

and fixed operators.

In this paper, we will present a different approach for an

extension of steerable filters which is directly related to the

detection of meaningful image features like junctions. This
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novel approach is based on the point-by-point multiplication

of steerable filters. As steerable filters (with respect to ro-

tation) are band limited in the angular function and because

multiplication in the spatial domain means convolution in the

Fourier domain, it is obvious that such product functions are

angularly band limited, i.e., steerable, as well. More specifi-

cally, we will show in section 3 that such filters are now indi-

vidually steerable with respect to two or more angles.

But first, we start with a short introduction to rotated

matched filtering which is based on [2]. Then, we will discuss

a new way of designing (single-)steerable filters by directly

modeling template functions for image features like edges

or lines as polar-separable function approximations in sec-

tion 2. In section 3, we introduce the novel concept of multi-
steerability and also give this theoretical concept an actual

meaning for image processing, when we show how to model

multiply oriented image structures like corners or crossing

using such filters. We conclude the paper with an example

for detecting crossings in checkerboard images using double-

steerable templates in section 4.

1.2. Rotated matched filtering using steerable filters

Let us assume we want to detect an image feature (e.g. an

edge or ridge) in an image s(�x) at an unknown position and

orientation. This detection problem can be formulated as ro-

tated matched filtering. This means that we compute (and

maximize) the correlation between rotated versions of a 2D

feature template s0 and the signal s. Let us define h(�x) =
s0(−�x) (such that correlation can be expressed as convolu-

tion) and let us introduce the rotation matrix R; in two di-

mensions, it depends on a single angle φ:

Rφ =
(

cos(φ) sin(φ)
− sin(φ) cos(φ)

)
. (2)

In slight abuse of notation, we denote the image template

function as h, regardless whether it is represented in Cartes-

tian or polar coordinates. Then h(Rφ�x) is a rotated version

of the (mirrored) feature template and the convolution result

Q(φ, �x) = s(�x) ∗ h(Rφ�x) (3)

indicates the strength of the sought feature for a given rotation

angle φ (resp. rotation matrix Rφ) at position �x. Let φ̂(�x) be

the rotation angle which maximizes Q at a given position �x
and let Q̂(φ̂, �x) denote this maximum value. Then φ̂ and Q̂
are maximum likelihood estimates for orientation and feature

strength for the signal model

s(�x) = Qs0(Rφ(�x − �x0) + �x0) + n(�x) (4)

where n(�x) denotes white Gaussian noise.

In general, this estimation scheme would require the im-

plementation of many filters. For 2D estimation, rotation can

be parameterized with a single angle, so it would require as

many filters as quantization levels of the angle. This is pos-

sible, but impractical. To overcome this problem, one can re-

strict the allowed template functions to the class of steerable
filters. In a recent paper, Jacob and Unser [2] show that many

classical feature detectors like Canny’s edge detector [10] or

the eigendecomposition of the Hessian matrix (e.g. [11]) can

be interpreted in the context of steerable filters in this way.

2. SINGLE-STEERABLE FILTERS AND
ORIENTATION ESTIMATION

The most common approach for designing steerable filters,

especially in introductory material like [12], is considering

derivatives of some isotropic function g(r) with respect to x
and y (or φ = 0 and φ = π

2 in polar representation) as base

filters. For the most popular choice, the Gaussian function

g(r) = e−cr2
= e−c(x2+y2) = e−cx2

e−cy2
, (5)

these derivatives up to any arbitrary order additionally remain

separable in the Cartesian xy-domain. Designing the base fil-

ters as such derivatives of isotropic functions automatically

guarantees band limited angular functions and hence steer-

ability, but there are two drawbacks. Firstly, computing all

derivatives w.r.t. the canonical directions x and y does not

yield a minimal set of base filters [1]. But there is also a sec-

ond point which will become important for this paper: we

somewhat lose the connection to the Fourier coefficients and

the angular signal they implicitly represent.

While Jacob and Unser [2] propose filter design criteria

based on measures for ‘localization’ or ‘absence of false os-

cillations’, we will directly base our filter design on the an-

gular function and its Fourier coefficients; with these coeffi-

cients being responsible for the steerability property, it seems

logical to optimize them directly given some signal model –

and this signal model is chosen such that it represents oriented

image features like edges or lines.

Local orientations are an important low level feature for

analyzing and understanding image data. The basis for the

concept of orientations is the observation that the spatial vari-

ation of the gradient directions is in general much slower than

the spatial variation of the image itself [3]. Therefore, the

study of signal gradients led to the concept of local orienta-
tions in signals, and the most important image features which

can be described using this model are edges and lines. For

lines, we can furthermore distinguish between unimodal lines

and bimodal lines, see fig. 1 for ideal templates of the three

models.

We already stress here that gray level scaling will be mean-

ingful later on. While steerable filtering itself is a linear op-

eration, the generalization towards multi-steerability requires

a non-linear step. Linear transformations have no effect on

feature detection using steerable filters, but if we construct

multi-steerable filters using some non-linear operation, then
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Fig. 1. From left to right, these images show the ideal tem-

plates for edge, unimodal line, and bimodal line. In the top

row, the angular function is plotted between −π and π and the

bottom row shows the resulting templates if all value larger

than a specified radius r0 are set to zero.

pre- and postprocessing with a linear gray level transforma-

tion (i.e., simple shifting and scaling) becomes an important

tool for achieving certain desired properties. We therefore

introduce the following convention: the range for the gray

values shall be scaled from −1 (black) to 1 (white) with 0
(gray) denoting ‘neutral’ values. These three patterns can be

expressed as polar separable functions using

hedge(r, φ) = f(r) gedge(φ) (6)

hline1(r, φ; θ) = f(r) gline1(φ; θ) (7)

hline2(r, φ; θ) = f(r) gline2(φ; θ) (8)

with radial function

f(r) =
{

1 r < rmax

0 else
. (9)

Modeling non-constant functions (for instance exponential de-

cay) is no problem as only the angular part needs to fulfill the

steering condition; the radial part is just multiplicative. For

the three signal models, we derive

gedge(φ) =
{

1 0 ≤ φ < π
−1 −π ≤ φ < 0 (10)

for edges and

gline1(φ; θ) =

⎧⎨
⎩

1 |φ| ≤ θ
2

−1 θ
2 < |φ| ≤ θ

0 else

(11)

gline2(φ; θ) = gline1(2φ; 2θ) (12)

for the two line models. The orientation sensitivity of the line

templates can be adjusted using the angle θ. Fig. 2 shows

Fourier series approximations to these base templates.

3. DEFINING MULTI-STEERABLE FILTERS

While being important low-level image features, single-

oriented structures allow only localization along the orien-

tation direction (aperture problem). Features better suited
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Fig. 2. Approximation of fig. 1 using a Fourier series. The

order used here was 15 and the opening angle θ for the wedges

representing lines was chosen to be 20◦.
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Fig. 3. Checkerboard pattern (edge × edge), L-junction (line1

× line1), T-junction (line1 × line2), X-junction (line2 ×
line2). Angular function in top row, resulting feature tem-

plate in bottom row. The three junctions also require a simple

shift operation as pre- and postprocessing, see main text.

for purposes like tracking are those features showing multi-

ple orientations, either occludingly or additively superposed.

The theory of multiple orientation estimation can be found in

[13, 14]. However, the big advantage of steerable filters is that

they are implicitly connected to an estimated signal model via

their Fourier coefficients. Moreover, we can determine which
type of double-oriented structure we actually see.

Considering the design of multi-steerable filters as prod-

ucts in the spatial domain, the scaling range of our single-

steerable filters from −1 to 1 immediately becomes clear:

multiplication with 1 changes nothing, while multiplication

with 0 cancels other signals out.

Multiplication of two rotated edge functions directly yields

a checkerboard pattern, see fig. 3. In the same figure, we also

present the generation of L-, T- and X-junctions using prod-

ucts between different line templates. The junction images,

however, needed some additional clever linear pre- and post-

processing: add 1 (set gray area from 0 to 1, i.e., the neutral

element w.r.t. multiplication, and the black area next to the

line from -1 to 0, i.e., to ‘cancel out’), then multiply, then

subtract 1 to set the DC level to zero again.

Obtaining the interpolation functions needed to steer the

templates is elegant as well. Let�b1 and�b2 be vectors contain-

ing the coefficients for the single-steerable templates. Then
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Fig. 4. Synthetic checkerboard image (with added Gaussian

noise, SNR = 10 dB) and detected checkerboard crossings.

The rectangle shows the size of the double-steerable filter

templates; here, 29 × 29 windows were used.

all the products between the individual elements form the set

of double-steerable interpolation coefficients. Generalization

towards more than two orientations, e.g. towards three uni-

modal lines for modeling Y-junctions is straightforward.

4. REPRESENTING CHECKERBOARD CROSSINGS
WITH DOUBLE-STEERABLE FILTERS

In order to show the wide applicability of multi-steerable fil-

tering for image analysis, we generated a synthetic image of a

checkerboard and added Gaussian noise (SNR = 10 dB). The

resulting image then is similar to those which are commonly

used for camera calibration. Fig. 4 shows the image and the

checkerboard crossings which were detected using a double-

steerable filter approach. For finding all 69 visible crossings

in this 800 × 600 pixel image, our algorithm written in pure

Matlab needed 17.5 seconds on a 3 GHz dual Pentium com-

puter. The application to real data (including highly distorted

checkerboard images taken with an endoscope) is investigated

further in [15].

5. SUMMARY AND CONCLUSION

In this paper, we presented the theory of multi-steerable filters
and gave examples for the case of double-steerability. Just

like standard steerable filters, this theory allows to represent

templates as sums of base templates, but in contrast to (sin-

gle) steerable filters, the templates computed with our novel

theory can be steered in two (or potentially more) directions

individually.

This greatly increases the class of templates which can be

modeled with the new theory. Especially for image analysis,

important features like corners, checkerboard patterns or var-

ious forms of line crossings now become available for feature

detection based on steerable filtering.

Additionally, rotated matched filtering using such filters

directly gives rise to line (both unimodal or bimodal) and edge

orientations in the image. This stands in contrast to other mul-

tiple orientation estimation schemes, which are not connected

to some assumed signal model and therefore do not allow a

distinction between different junction types. Concluding this

paper, we state that the whole theory is rather straightforward,

yet very powerful and promising.

Matlab demonstration code for double-steerable

filters can be downloaded at our homepage:

www.lfb.rwth-aachen.de/en/highlights/
multi_steerable_filters.html.
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