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Abstract: This paper proposes a method for fast computation of inverse 
Krawtchouk moment transform for signal and image reconstruction 
using Clenshaw’s recurrence formula. It is shown that the proposed 
approach requires lesser computations than the straightforward method 
of computation for signal and image reconstruction. In order to verify 
the proposed approach, simulation results are reported for 1D signal and 
2D image reconstructions from the given Krawtchouk moments for 
signal and image. The proposed approach is suitable for parallel VLSI 
implementation because the proposed  structure is simple, regular and 
modular. 
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1. INTRODUCTION 
During the last few years, many moments were suggested as shape 
descriptors of an image in pattern recognition, image classification, 
template matching, image watermarking, edge detection etc. The 
moments used for the above applications are Geometric[1], Legendre[2], 
Zernike[2] etc. Some of the problems associated with these moments are 
( i) Numerical approximation of continuous integrals (ii) Large variation 
in the dynamic range of values and (iii) Coordinate transformations. 
Hence, in order to solve the above problems, Mukundan et al.[3] 
proposed Tchebichef moments based on discrete Tchebichef 
polynomials and they experimentally verified that the reconstruction 
error is minimum using these moments as compared with other moments 
like Legendre and Zernike moments. Recently, Pew-Thian Yap et al.[4] 
proposed Krawtchouk moments based on discrete Krawtchouk 
polynomials. Their experimental results show that Krawtchouk moments 
are better in terms of reconstruction error when compared with Zernike, 
Legendre and Tchebichef moments. 
Many algorithms have been developed for fast computation of Legendre 
moments[5-7]. Recursive algorithms have been found very effective for 
realization using software and very large scale integrated circuit (VLSI) 
techniques. Chiang and Liu [8] proposed recursive algorithms for 
forward and inverse modified discrete cosine transform that are suitable 
for parallel VLSI implementation. Vladimir Nikolajevic et al.[9] 
proposed another algorithm for the computation of forward and inverse 
modified discrete cosine transform using Clenshaw’s formula.  

 
Algorithm for parallel recursive computation of inverse Legendre 
moment transform for signal and image reconstruction using Clenshaw’s  
recurrence formula was proposed in reference[10]. Recently, Guobao 
Wang et al.[11] proposed a recursive algorithm for  computation of            
Tchebichef moment and its inverse transform using Clenshaw’s formula.  
However, less work has been reported for the fast computation of 
inverse Krawtchouk moment transform. 
In this paper, we propose a recursive algorithm for the fast computation 
of inverse Krawtchouk moment transform for signal and image 
reconstruction purposes using Clenshaw’s recurrence formula. The 
reconstruction can be effectively implemented using recursive 
equations. The proposed recursive structure is simple, regular and 
particularly suitable for low cost VLSI implementation. 
This paper is organized into five sections. A brief presentation on 
Krawtchouk moments is given in section 2. Section 3 presents the 
details about Clenshaw’s recurrence formula. Proposed method of 
computation of inverse Krawtchouk moments transform for both signal 
and image reconstruction is presented in section 4. Finally, the last 
section presents the simulation results on reconstruction and conclusions 
about the work. 
2. A BRIEF PRESENTATION ON KRAWTCHOUK MOMENTS 

The pth order Krawtchouk moments [4] pQ  for N point 1D 

signal )(xf  is defined as 
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 where )1,;( NxK p is the pth order weighted Krawtchouk 

polynomial [4] which is defined as 
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where )1,;( NxK p  is the pth order discrete Krawtchouk 

polynomial [4] defined as 
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for x, p=0,1,2,….N-1, The parameter   (0,1), 12 F  is the 
hypergeometric function, defined as 
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and ka)( is the Pochhammer symbol given by 
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The weight function )1,;( Nxw  is given by 
xNxN

xNxw 11 )1()()1,;(                            (5)                                                            

The weight function )1,;( Nxw  can be recursively calculated 
using 
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and )1,;( Np  is the squared norm, which is given by 
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The three term recursive relation for the weighted Krawtchouk 
polynomials is given by 
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Given a set of Krawtchouk moments pQ  up to order maxN  for a 

digital signal )(xf , its reconstruction version from Krawtchouk 
moments is given by 
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Krawtchouk moments pqQ  of order (p,q) for a digital image 

),( yxf of size N x M are defined[4] as 
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A set of Krawtchouk moments up to order (Nmax, Mmax) are given, then 
the inverse moment transform can be computed using 
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The evaluation of inverse Krawtchouk moments transform for 
reconstruction as defined in eq.(9) and eq.(11) can be evaluated by 
summing the weighted Krawtchouk polynomials weighted with the 
given coefficients Q. The polynomials can be evaluated using the 

polynomial recursive formula given in eq.(8). If this straightforward 
method is applied for computing the inverse Krawtchouk moment 
transform as given in eq.(9), the weighted Krawtchouk polynomials up 
to order Nmax need to be evaluated and it requires accumulating the sum 
of eq.(9). Hence, it requires more operations for computation which 
makes evaluation slow. In order to overcome the above problem, we 
propose an approach for fast computation of inverse Krawtchouk 
moment transform using Clenshaw’s recurrence formula. This method is 
more effective than the straightforward method and is very much 
suitable for parallel VLSI implementation. 

3. CLENSHAW’S RECURRENCE FORMULA 
Since we use Clenshaw’s recurrence formula in the proposed approach, 
a brief description about Clenshaw’s recurrence formula is given below. 
Clenshaw’s recurrence formula [12] is an efficient way to evaluate a 
sum of products of indexed coefficients by functions that obey a 
recurrence relation. Suppose that the desired sum is 
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in which )(xFn obeys the recurrence relation as follows 
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for some functions ),( xn and ),( xn  

Then Clenshaw’s recurrence formula states that the sum )(xf  can be 
evaluated by 
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 where the quantities n can be obtained from the following recurrence: 
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for 1,......1, MMn  and solve backward to obtain 2  and 1  
4. PROPOSED METHOD 

In this section, we propose a method for fast computation of inverse 
Krawtchouk moments transform for both signal and image 
reconstruction using Clenshaw’s recurrence formula. 
4.1. Computation of Inverse Krawtchouk Moment Transform for 
Signal Reconstruction 
In order to evaluate eq.(9) using Clenshaw’s recurrence formula, we 
consider 

)1,;()( NxKxF nn  
Comparing eq.(13) with eq.(8), we get 
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By using the recursive formula defined in (14) with 0c  replaced by 

0Q , the reconstruction formula given in (9) can be expressed as  
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                                                                                               (18) 
where 2 , 1 and 0  are computed recursively from 
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The value of 0 is given by 

0210 ),1(),0( Qxx  , from which we have 
 2100 ),1(),0( xxQ   

Substituting this 0Q in eq.(18) 
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By substituting the values of 
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which on simplification gives 
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The proposed recursive approach for signal reconstruction can be 
summarized as follows 
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In the above presented approach, we recursively generate p  from the 

input sequence pQ ( p = Nmax,…..0). At the (Nmax+1)th step, we obtain 

0 which is used to evaluate )(xf as given in (22). Recursive 
structure for the implementation of 1D inverse Krawtchouk moment 
transform )(xf according to eq.(22) is shown in Fig.1. The box z-1 
shown in figure represents delay element.                                                                    
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Fig.1. Recursive computation of 1 D inverse Krawtchouk moment 
transform 
In the proposed recursive method for computing the inverse Krawtchouk 
moment transform, we need 2(Nmax+1)+1 = 2Nmax+3 multiplications and 
2(Nmax+1) = 2Nmax+2 additions for each value of x . In order to 
compute the inverse Krawtchouk moment transform as given in (9) by 
using the straightforward method, we need to calculate the weighted 
Krawtchouk polynomials upto order Nmax using the polynomial 
recursive formula given in (8) which requires 2(Nmax-1)+(Nmax+1) 
=3Nmax - 1 multiplications including multiplication with square root of 
weight function and Nmax-1 additions for each value of x . Evaluation of 
sum given in (9) requires Nmax+1 multiplications and Nmax additions. 
Hence, for calculation of inverse Krawtchouk moment transform for a 
single value of x , requires a total of (3Nmax-1)+(Nmax+1) = 4Nmax 
multiplications and (Nmax-1)+Nmax = 2Nmax-1 additions. The same is 
given in table 1.  

Method Multiplications Additions 
Straightforward method 4Nmax 2Nmax-1 
Proposed recursive method 2Nmax+3 2Nmax+2 

Table.1. Comparison of computational complexity for computing a 
single 1D inverse Krawtchouk moment transform )(xf  

4.2 Computation of Inverse Krawtchouk Moment Transform for 
Image Reconstruction 

The reconstruction formula for 2D case as given in eq.(11) can be 
expressed as  
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and the coefficients )(yrp defined in (24) are evaluated first in 

direction ‘y’ for each value of p ranging from maxN to 0, according to 
the above presented 1D signal reconstruction method. 
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Then )(yrp are used to evaluate ),( yxf defined in (23) in the ‘x’ 

direction. 
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In eq.(25), the evaluation of  )(yrp requires 2Mmax+3 multiplications 

and 2Mmax+2 additions for each value of ‘p’. Since there are Nmax+1 
values of ‘p’, a total of (2Mmax+3) (Nmax+1) = 
2NmaxMmax+2Mmax+3Nmax+3 multiplications and (2Mmax+2)(Nmax+1) = 
2NmaxMmax+2Mmax+2Nmax+2 additions are required. Eq.(26) requires 
2Nmax+3 multiplications and 2Nmax+2 additions . Hence, computation of 
one ),( yxf using the proposed recursive implementation of (25) and 
(26) requires a total of  (2NmaxMmax+2Mmax+3Nmax+3)+(2Nmax+3) =  

+  

z-1

z-1

+ 
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 (2NmaxMmax+2Mmax+5Nmax+6) multiplications and 
(2NmaxMmax+2Mmax+2Nmax+2)+(2Nmax+2)= 
(2NmaxMmax+2Mmax+4Nmax+4) additions. The straightforward method 
for computing one 2D inverse Krawtchouk moment transform is the two 
stage computation as given in (23) and (24) which requires 
4Mmax(Nmax+1)+4Nmax = (4MmaxNmax+4Mmax+4Nmax) multiplications and 
(2Mmax-1)(Nmax+1)+(2Nmax-1) = (2MmaxNmax+2Mmax+Nmax-2 ) additions. 
The same is given in table 2. 

Table.2. Comparison of computational complexity for computing a 
single 2D inverse Krawtchouk moment transform ),( yxf  

5. SIMULATION RESULTS AND CONCLUSIONS 
The proposed approach was used for  reconstructing a 1D signal (30 
points), binary image Letter E (40 x 40 pixels) and Lena image of size 
256 x 256 from the given Krawtchouk moments of different orders and 
different values of . The reconstructed signal and images are shown in 
figures 2, 3 and 4 respectively. It is noted from the simulation results 
that the proposed approach performed well for both 1D and 2D signals. 
Further, during the binary image reconstruction experiment, the obtained 
values are not binary. Hence, these values are converted to binary by 
using a threshold value of 0.5. This paper proposed a simple recursive 
structure for fast computation of inverse Krawtchouk moment transform 
using Clenshaw’s recurrence formula. The proposed approach requires 
lesser computations than the straightforward method. This approach is 
simple and modular in structure, hence suitable for low cost parallel 
VLSI implementation. 
 

 
Fig.2. Original and reconstructed 1D signals (a) Original 1D signal (b)-
(d) Reconstructed signal using Krawtchouk moments up to order 10, 20, 
27 and =0.85  

 

 

Fig.3. Original and reconstructed images (a) Original binary image (b)-
(d) Reconstructed images using moments up to order 10, 15 , 20 and 

5.0,5.0 21  

 
 

Fig.4. Original and reconstructed images (a) Original Lena image 
(b)-(d) Reconstructed images using moments up to order 50, 100, 
 200 and 5.0,5.0 21 . 
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