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ABSTRACT

Tensor-based approaches to visual object detection can drasti-
cally reduce the number of parameters in the training process.
Compared to their vector-based counterparts, tensor methods
therefore train faster, better manage noisy or corrupted train-
ing samples, and are less prone to over-fitting. In this paper,
we show how to incorporate the kernel trick into tensor-based
filter design. Dealing with object detection in cluttered natu-
ral environments, the method is shown to cope with substan-
tially varying training data and a cascade of only two kernel
tensor-filters is demonstrated to provide very reliable results.

Index Terms— Color object detection, tensor-based filter
design, kernel ridge regression

1. INTRODUCTION

The work reported in this paper was motivated by problems
we encountered in the context of interactive vision systems.
For instance, in a project on assistive technologies for the
home environment [1, 2], users were supposed to interac-
tively teach the system about objects in their surroundings. In
scenarios like this, data acquisition and annotation happens
online so that the data will hardly be flawless but noisy and
rather imperfectly aligned. Also, in order for the user to not
experience ennui and frustration, the data must be processed
quickly and models must be learned rapidly. Moreover, as in-
teractive technologies are usually intended for use in natural
and unconstrained environments (see Fig. 5), we are in need
of methods that perform reliably under a variety of illumina-
tion conditions, view directions, and scene clutter.

While modern classifier ensembles accomplish very ro-
bust detection (cf. e.g. [3, 4]), they require vast amounts of
training data and are characterized by extensive training times.
Traditional linear filters, on the other hand, train quickly but
are easily affected by corrupted training data and perform
less reliable under incoherent conditions [5]. Recent results,
however, indicate that multilinear generalizations of linear ap-
proaches provide a reasonable compromise between the two
extremes. Sparked by reports that understanding images as
multiindexed objects or higher order tensors improves image
coding and classification [6, 7, 8], tensor-based approaches
have lately been applied to filter design. In [9, 10] they were

reported to provide quickly trainable and robust tools for view-
based object detection.

In this paper, we build upon these findings. We adopt the
approach in [9] and show how to achieve even more robust-
ness by incorporating the kernel trick. Dealing with color ob-
ject detection in cluttered home environments, we present a
simpler ensemble approach than in [9] and demonstrate that a
filter cascade of only two levels performs very robust. First,
however, we summarize the mathematical framework. Sec-
tion 3 presents and discusses experimental results and a con-
clusion will end this contribution.

2. MATHEMATICAL BACKGROUND

Linear filtering of an image I means to correlate it with a fil-
ter W yielding a response map Y = I∗W . Therefore, if X ij

denotes the image patch centered at image coordinates (i, j),
the corresponding response is tantamount to the inner product
Yij = 〈W ,X ij〉. This is the starting point for vector- and
tensor-based filter design alike. However, since our method
of tensor-based filter design makes use of least squares re-
gression over vectors, we will first summarize least squares
techniques for vector-based filter design.

2.1. Least Squares Regression

Given a sample of l = 1, . . . , N vectors xl ∈ R
m and a

corresponding set of class labels yl (typically in {−1,+1}), a
suitable filter w results from minimizing the error

E(w) =
∑

l

(
〈w,xl〉 − yl

)2
= ‖Xw − y‖2 (1)

where the N × m sample matrix X consists of the samples
xl and y ∈ R

N contains the corresponding labels. This is a
convex optimization problem that has a closed form solution.
After setting the gradient ∇wE = 0 and some algebra, one
obtains:

w =
(
XTX

)
−1

XTy. (2)

In the signal processing literature, this technique is often called
synthetic discriminant filtering [5]; in machine learning it is
known as linear discriminant analysis [11].
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2.2. Ridge Regression

Ordinary least squares regression is overly sensitive against
outliers in the training data. The ridge regression approach
aims to alleviate this and to control over-fitting by penalizing
the norm of w. This is done by introducing a regularization
term into the error criterion: E(w) = ‖Xw− y‖2 + λ‖w‖2.
Minimizing this error with respect to w is a convex problem,
too, whose closed form solution is given by:

w =
(
XTX + λI

)
−1

XTy. (3)

2.3. Kernel Ridge Regression

With some matrix algebra [11], one can show that w actually
lies in the span of the training samples, i.e. w = XT

α, where
α is called the dual vector. The error criterion may thus be
cast as E(α) = ‖XXT

α−y‖2 +λ‖XT
α‖2 which is solved

by α =
(
XXT + λI

)
−1

y. Now the matrix XXT of inner
products between samples can be replaced by a kernel matrix
K. Since the inner products in K can be inner products in
any space, one may also introduce nonlinear functions of the
samples. In terms of w, the kernel trick provides the solution:

w = XT
(
K + λI

)
−1

y. (4)

2.4. Tensor-Based Filter Design

Since our main interest is in color object detection and since
color image patches can be thought of as third-order tensors
X ∈ R

m1×m2×m3 where m1 and m2 denote the x- and y-
resolution and m3 counts the number of color channels (usu-
ally 3), we restrict the following discussion to third-order ten-
sors.

Using Einstein’s summation convention, the inner product
of two third-order tensors W and X

〈W ,X 〉 =
∑

i,j,k

WijkXijk. (5)

may be written 〈W ,X 〉 = WijkXijk. Given a training set
{(X l, yl)}, where the X

l are color image patches from two
classes and the yl denote class membership, we seek to solve

W = argmin
W̃

∑

l

(
WijkX

l
ijk − yl

)2
. (6)

Towards efficiency, we impose a structural constraint on W

and require it to be decomposable into R tensors of rank 1:

W =

R∑

r=1

ur ⊗ vr ⊗wr, (7)

where ⊗ denotes the vector outer product. This constraint
reduces the number of adjustable parameters from m1·m2·m3

to R · (m1 + m2 + m3) and allows for solving the problem

Input: a training set {X l, yl}l=1,...,N of image patches
X

l ∈ R
m1×m2×m3 with class labels yl ∈ {−1, +1}

Output: a rank-R solution of a third-order
filter tensor W =

P
r
ur ⊗ vr ⊗wr

for r = 1, . . . , R

t = 0
randomly initialize ur(t)

orthonormalize ur(t) w.r.t. {u1, . . . ,ur−1}

randomly initialize vr(t)

orthonormalize vr(t) w.r.t. {v1, . . . ,vr−1}

repeat
t ← t + 1

contract xl
k = X l

ijk ur
i (t) vr

j (t)

compute wr(t) = argmin
w
‖Xw − y‖2

similarly update vr(t)

similarly update ur(t)

until ‖ur(t)− ur(t− 1)‖ ≤ ε ∨ t > tmax

endfor

Fig. 1. Alternating least squares scheme to compute a filter
W given as a sum over outer products ur ⊗ vr ⊗wr.

in (6) in a series of simpler tasks. Consider the simplest case
where W = u ⊗ v ⊗ w. We can solve for u, v, and w by
means of the following steps. First, given random guesses for
u ∈ R

m1 and v ∈ R
m2 , compute the tensor contractions

xl
k = X l

ijk ui vj , l = 1, . . . , N. (8)

Stacking the resulting vectors xl ∈ R
m3 into a sample matrix

X yields the familiar optimization problem for w:

w = argmin
w̃

‖Xw̃ − y‖2. (9)

Note that at this point either (2), (3), or (4) can be applied!
Second, after solving for w, the training set is contracted over
u and w in order to update the estimate of v. Third, a new
estimate of u can be computed from the estimates of v and
w. Since the procedure starts with arbitrary vectors u and v,
it must be iterated until convergence. In our implementation,
it stops, if ‖u(t)−u(t− 1)‖ ≤ ε. Practical experience shows
that this usually converges in less than 10 iterations.

The algorithm in Fig. 1 extends this alternating scheme
to the derivation of tensor-templates of rank R. If W =∑k

r=1
ur ⊗ vr ⊗ wr is a k term solution for the projection

tensor, a next triplet of vectors (uk+1,vk+1,wk+1) can be
found using the same procedure. Redundancy is avoided by
otrhogonalizing the vectors uk+1 and vk+1 with respect to
their predecessors.
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(a) (b)

Fig. 2. 2(a) Seven examples from a set of 35 face images used to train the templates on the right. 2(b) Templates resulting from
applying ordinary (left), regularized (middle), and kernelized (right) least squares estimators in the algorithm in Fig. 1.

(a) (b)

Fig. 3. 3(a) Nine examples from a set of 22 color image patches showing a green cup used to train the template on the right.
3(b) Template resulting from using Gaussian kernel least squares estimators in the alternating least squares algorithm in Fig. 1.

Compared to vector-based template design, the tensor-
based method trains quicker. While vectorizing multivariate
data of size m1 × m2 × m3 would require the inversion of
matrices of sizes m1m2m3 ×m1m2m3 during training, the
matrix inverses in our algorithm are of considerably reduced
sizes m3×m3, m2×m2 and m1×m1, respectively. In prac-
tice, we found that this accelerates training by several orders
of magnitude. Also, the tensor-based approach does not suffer
from small sample sizes. While for the vector-based approach
the sample covariance matrices may be singular because the
number of samples is much smaller than the dimension of the
embedding space, the matrices in our algorithm will allow for
inversion even if the sample set is small.

3. EXPERIMENTS

Figure 2 illustrates an experiment meant to convey the ro-
bustness of tensor-based template design using kernel ridge
regression. We considered a sample of N = 35 grey-valued
face images and, setting all labels yl to +1, computed second-
order tensor-templates (R = 6). Obviously, the ordinary least
squares variant of our algorithm could not cope with the vary-
ing illuminations, head poses, and facial expressions in the
sample (see the noisy template on the left of Fig. 2(b)). While
the regularized variant of the algorithm learned a better but
still ghostly face template, a kernelized variant using a Gaus-
sian kernel produced the template on the right of Fig. 2(b).
Here, we clearly recognize a smoothed, averaged face.

In another experiment, we considered object detection in
natural home environments. Given a set of 88 pictures of a
breakfast scene, 22 of these pictures were used for training,
the remaining 66 for testing. A user was asked to quickly
indicate the locations of a green cup seen in all the training
images. Centered at the resulting coordinates, patches of size
91×71×3 were cropped from the images, leading to a set of
badly aligned examples of that cup (see Fig. 3(a)). A number
of up to 198 counterexamples was randomly cropped from
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Fig. 4. Recall and precision on the breakfast scene test set.

the background of the images, providing us with differently
sized training sets of positive and negative examples. Given
a C implementation running on a 3GHz Xeon PC, in each
experiment, each of the variants of our algorithm produced
third-order templates (R = 6) in less than a second.

Figure 4 compares recall and precision rates we obtained
from testing different filters. Tensor-templates trained with
ridge- and kernel-ridge-regression clearly outperform the ones
trained with ordinary least squares estimators. We attribute
this to variances in the training sets and the ability of the
former two methods to cope with these. However, only the
kernel-based method seems unaffected by the size of the train-
ing set: For the the filters trained with ridge regression esti-
mators, increasing the set size improves recall but diminishes
precision and therefore obviously impairs their ability to cope
with outliers. The filters trained with kernel estimators, in
contrast, yield almost constant rates for both measures.

Trained with 66 examples the ordinary least squares ap-
proach actually produced a recall of 100% and a precision of
20%. Figure 5(a) illustrates that, despite the perfect recall, the
many false positives prohibit the practical use of this filter.

For the same training set, the ridge- and kernel-ridge re-
gression variants produced recall/precision of 92%/79% and
98%/71%, respectively. Since almost all false positives re-
turned by these filters were systematically confused with the
blue cup or the green platter in the scene, we experimented

IV - 47



(a) Results achieved by filtering with a tensor-based filter trained with ordinary least squares estimators.

(b) Results achieved by filtering with a tensor-based filter trained with kernel ridge regression estimators followed by a template matching step .

Fig. 5. Exemplary detection results obtained on the breakfast scene test set.

with a second filter stage, where image regions with high
responses were matched against a template that was trained
by applying the corresponding method to positives examples
only; Fig. 3(b) shows such a template for the kernel vari-
ant. Again considering the training set of 66 samples, for
the ordinary least squares variant this increased the precision
to 24%; the other two variants now both achieved perfect
precision. Exemplary results obtained from the kernel-based
tensor-template with rates of 98%/100% for recall/precision
are shown in Fig. 5(b).

4. CONCLUSION

This paper discussed a tensor-based approach to filter design
that incorporates the kernel trick. The method was shown to
be robust against outliers and substantial variation in the train-
ing data. Even from small sets of sloppily aligned examples,
it derives filters that very reliably detect color objects in clut-
tered natural scenes. Therefore and since it trains rapidly, the
framework presented in this paper appears well suited for ap-
plication in interactive vision systems where online learning
is pivotal.
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