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ABSTRACT

Visual data comprises of multi-scale and inhomogeneous signals. In
this paper, we exploit these characteristics and develop an adaptive
data approximation technique based on a hierarchical tensor-based
transformation. In this technique, an original multi-dimensional im-
age is transformed into a hierarchy of signals to expose its multi-
scale structures. The signal at each level of the hierarchy is further
divided into a number of smaller tensors to expose its spatially inho-
mogeneous structures. These smaller tensors are further transformed
and pruned using a collective tensor approximation technique. Ex-
perimental results indicate that our technique can achieve higher
compression ratios than existing functional approximation methods,
including wavelet transforms, wavelet packet transforms and single-
level tensor approximation.

Index Terms— Multilinear models, image compression, multi-
scale analysis, adaptive bases, tensor ensemble approximation

1. INTRODUCTION
With advances in imaging technologies—-such as CCD, laser, mag-
netic resonance, and diffusion tensor—-visual data of multiple di-
mensions have been produced at an unprecedented rate and scale.
These new technologies bring new challenges to existing multidi-
mensional image compression techniques.

Visual data exhibit two important intertwined characteristics. First,
they comprise of signals at many different frequencies. Second,
these signals have spatially inhomogeneous magnitudes. Existing
techniques, such as wavelet transforms, have successfully exploited
both of the aforementioned characteristics to achieve a transforma-
tion that is local in both frequency and space domains. As a result
of such transformation, the inherent structures of the original sig-
nal become better exposed to compression. One important aspect
of such inherent structures is that even though the original signal
appears inhomogeneous, its elementary components at different fre-
quencies or local regions may exhibit similar patterns. Further oper-
ations performed on these components can remove redundancy and
achieve compact representation. There are at least two possible op-
erations we can perform. First, components with similar patterns can
be grouped together and compressed collectively in a lower dimen-
sional space to remove redundancy. Second, a component can be
simply pruned if its magnitude is negligible. Such processing gives
rise to significantly reduced size and dimensionality of a dataset and
overall, reduced representational complexity.

Multilinear models based on tensor approximation have received
much attention recently. They are capable of generating a more com-
pact representation of multi-dimensional data than traditional dimen-
sionality reduction methods. In this paper, we exploit the aforemen-
tioned characteristics of visual data and develop a compact repre-
sentation technique based on a hierarchical tensor-based transforma-
tion. In this technique, an original multi-dimensional dataset is trans-

formed into a hierarchy of signals to expose its multi-scale struc-
tures. The signal at each level of the hierarchy is further divided into
a number of tensors with smaller spatial support to expose its spa-
tially inhomogeneous structures. These smaller tensors are further
transformed and pruned using a tensor approximation technique to
achieve a highly compact representation. Our hierarchical tensor ap-
proximation can achieve far higher quality than wavelet transforms
at large compression ratios. In comparison to a traditional multires-
olution analysis which simply projects signals at various different
resolutions onto a prescribed basis which was obtained without any
specific knowledge of the data, our hierarchical approximation ac-
tually adopts bases specifically tailored for the characteristics of the
data currently being approximated. We have successfully applied
our new hierarchical tensor approximation to both medical and sci-
entific multidimensional images.

2. BACKGROUND AND RELATEDWORK
A real Nth-order tensor A ∈ �n1×n2×...×nN , can be considered as
an element of a composite vector space, Rn1 ⊗ Rn2 ⊗ · · · ⊗ RnN ,
where we call each Rni an elementary vector space, and ⊗ denotes
the Kronecker product of vector spaces. The dimensionality of the
i-th elementary vector space is ni. Let us first review basic ten-
sor approximation techniques, including rank-r approximation and
rank-(r1, r2, ..., rN ) approximation.

A rank-r approximation of A is formulated as

Â =

r∑

j=1

bj ×1 u
(1)
j ×2 u

(2)
j × · · · ×N u

(N)
j , (1)

where bj is a scalar coefficient, each u
(i)
j is simply a column vec-

tor of length ni, and ×k represents k-mode product of a tensor by a
matrix 1. The column vectors, {u(i)

j }r
j=1, are not necessarily orthog-

onal to each other. An efficient algorithm for rank-r approximation
can be found in [1]. When r is small, the scalar coefficients along
with their associated basis vectors give rise to a compact representa-
tion of the original tensor.

A rank-(r1, r2, ..., rN ) approximation of A is formulated as

Ã = B ×1 U(1) ×2 U(2) × · · · ×N U(N), (2)

where each basis matrix U(i) ∈ �ni×ri , and the core tensor B ∈
�r1×r2×···×rN . The column vectors of each U(i) are orthonor-
mal to each other. Once the basis matrices are known, B = A ×1

U(1)T ×2 U(2)T × · · · ×N U(N)T

. When r1, r2, . . . , rN are suffi-
ciently small, the core tensor and the basis matrices together give rise

1The k-mode product of a tensor A by a matrix U ∈Jk×nk ,
denoted by A ×k U, is defined as a tensor with entries: (A ×k

U)i1...ik−1jkik+1...iN
=

∑
ik

ai1...iN
ujkik

.
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to a compact representation. The Alternative Least Square (ALS) al-
gorithm was used in [2, 3] to solve the optimal basis matrices given
their reduced ranks. In each iteration, ALS optimizes only one of the
basis matrices, while keeping others fixed. It has been demonstrated
in [4] that rank-(r1, r2, · · · , rN ) tensor approximation can achieve
smaller Root Mean Squared Errors (RMSE) than Principal Compo-
nent Analysis (PCA) given the same compression ratios.

Note that existing tensor approximation methods consider the
input data as a single-resolution multi-dimensional array without ex-
ploiting its multi-scale structures. On the other hand, wavelet anal-
ysis is inherently a multi-scale analysis tool and has been frequently
applied to multidimensional image compression [5, 6]. Wavelet
packet techniques have also been developed to recursively decom-
pose both the low-frequency and high-frequency components at each
scale [7, 8]. When wavelets are applied to multi-dimensional sig-
nals, the bases are typically formed as tensor products of the one-
dimensional bases. There has been work on developing more pow-
erful oriented wavelet bases [9]. However, such work has been pri-
marily focused on two-dimensional images while this paper focuses
on images with a dimensionality higher than two.

3. HIERARCHICAL TENSOR APPROXIMATION

Given a collection of multi-dimensional images with the same size
and dimensionality, our hierarchical approximation algorithm pro-
duces a compact hierarchical representation based on tensor approx-
imation by removing the redundancies among different images as
well as within each one. At each level of the hierarchy, our represen-
tation keeps an incomplete approximation of a list of (subdivided)
tensors. At an intermediate level, these subdivided tensors represent
the residual errors of the accumulated approximation at higher lev-
els. Once the tensors representing the residual errors are passed to
the next lower level, each of them is further spatially subdivided into
up to 2N smaller tensors where N is the order of the original tensors.
In the following, we first discuss tensor approximation at each level,
and then introduce hierarchical transformation and approximation.

3.1. Tensor Ensemble Approximation

In many situations, we need to simultaneously approximate an en-
semble of tensors, and most often, these tensors have strong corre-
lations. For example, a multi-dimensional array of color values or
velocity vectors gives rise to three scalar tensors for the three color
channels or three components of the vectors. As we know, color re-
sponse curves have much overlap with each other and velocity com-
ponents need to satisfy certain physics-based equations. As a result,
these scalar tensors have strong correlations with each other. As will
be discussed in the next section, we also subdivide a large tensor
into smaller ones and approximate them collectively because these
subdivided tensors have local spatial support and may share similar
basis matrices among each other.

Suppose the list of tensors at level l is Al
1,Al

2, · · · ,Al
ml

, where
ml is the number of tensors and Al

i ∈ �nl
1×nl

2×...×nl
N , and we

look for a rank-(rl
1, r

l
2, ..., r

l
N ) approximation of each Al

i, which is
denoted as Ãl

i. Because of correlations and redundancies among
this list of tensors, approximating each of them separately is subop-
timal. We move one step further and approximate all these tensors
collectively. To achieve this goal, we organize these ml N -th order
tensors into a (N + 1)-th order tensor G l ∈ �nl

1×nl
2×...×nl

N×ml ,
and obtain a rank-(rl

1, r
l
2, ..., r

l
N , rl

N+1) tensor G̃l as its approxima-
tion using the ALS algorithm. Note that rl

N+1 ≤ ml. This ap-
proximation is compactly represented using N + 1 basis matrices,

(a) Original (b) Individual (c) Ensemble
PSNR 20.13 PSNR 26.17

Fig. 1. A comparison of a reconstructed SPONGE texture from both
ensemble and individual tensor approximations. (a) Original image,
(b) a reconstructed image from individual approximation, (c) a re-
constructed image from our ensemble approximation. (b)&(c) share
the same compression rate which is 87.5%.

U(1), · · · ,U(N),U(N+1), and a core tensor H. That is,

G̃l = H×1 U(1) ×2 U(2) × · · · ×N U(N) ×(N+1) U(N+1), (3)

where U(1) ∈ �nl
1×rl

1 , · · ·, U(N) ∈ �nl
N×rl

N and U(N+1) ∈
�ml×rl

N+1 and H ∈ �rl
1×rl

2×···×rl
N

×rl
N+1 . When necessary, it is

actually quite convenient to extract the core tensor Bl
i of each N -th

order subtensor Ãl
i out of this ensemble representation. Let u(N+1)

i

be the vector representing the transposed i-th row of U(N+1). Then,

Bl
i = H×(N+1) u

(N+1)T

i . (4)

We have compared our tensor ensemble approximation against
individual tensor approximation. Fig. 1 shows one of such compar-
isons on texture images. In this example, the original texture image
is partitioned into 16 blocks each of which has three color channels.
Our ensemble approximation models the data as a list of 48 subten-
sors, approximates them collectively, and achieves a peak signal-to-
noise ratio (PSNR) of 26.17 at 87.5% compression rate. On the other
hand, individual approximation needs to store a distinct set of basis
matrices for each color channel and each subtensor even when these
bases are similar, and can only achieve a PSNR of 20.13 at the same
compression rate.

3.2. Hierarchical Transformation and Approximation
In this section, let us first introduce a lossless hierarchical transfor-
mation of multi-dimensional matrices, or tensors. This transforma-
tion decomposes the original data into multiple levels and removes
the redundancy at each level by exploiting the similarity among dif-
ferent spatial regions. To exploit spatial inhomogeneity of the orig-
inal data, further lossy approximation (quantization and pruning) is
performed on the resulting multilevel data. These two steps together
give rise to a very compact representation.

We perform the lossless hierarchical transformation from top to
bottom. The original input tensors are placed at the top level, which
is also the first level. At each level l, there is an initial list of N -
th order tensors, Al

1,Al
2, · · · ,Al

ml
. We exploit similarity among

these tensors and remove redundancy by performing tensor ensem-
ble approximation as discussed in the previous section. We only per-
form an incomplete approximation in the sense that the ranks of the
truncated basis matrices are set to be smaller than necessary and the
residual error is not necessarily reduced to the desired level. From
this incomplete approximation, we can obtain an approximated ver-
sion, Ãl

i, of each tensor Al
i. A residual tensor, E l

i = Al
i − Ãl

i, is
subsequently defined for each tensor. Each residual tensor is then
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Fig. 2. In our hierarchical tensor transformation, an original tensor is
represented as the summation of incomplete tensor approximations
at multiple levels. The tensors at each level are subdivided residual
tensors passed from the higher level.

subdivided into up to 2N smaller tensors by dividing the dimension-
ality of each elementary vector space in half unless the dimension-
ality of an elementary vector space has already been reduced to one.
These subdivided residual tensors are passed to the next lower level
in the hierarchy for further approximation. Therefore, there will be at
most 2Nml smaller tensors in the next lower level. And the approx-
imation process repeats on these subdivided tensors. Such tensor
subdivision and approximation can be repeated until the dimension-
ality of all elementary vector spaces has been reduced to one. Note
that at the bottom level, all the tensors have only one scalar element,
and further subdivision and approximation have become unneces-
sary. Even though we perform incomplete tensor approximation at
every level except the bottom one, it can be easily verified that the
original tensors at the top level can be faithfully reconstructed by
first reconstructing the (residual) tensors at each level from their cor-
responding core tensors and basis matrices, and then accumulating
the tensors at all levels together (Fig. 2).

To achieve a more compact representation, we need to perform
further lossy approximation of the original data from the above hier-
archical transformation. We achieve this goal by performing quan-
tization on the core tensor coefficients followed by a tensor pruning
step. Coefficients with a magnitude smaller than the quantization
step are set to zero. The elements of the basis matrices are also
quantized. In our experiments, we always use 8 bits per element for
the basis matrices, and 8-20 bits per coefficient for the core tensors.
After quantization, we further perform a pruning step on core ten-
sors by introducing a separate pruning threshold which can simply
be zero. For each core tensor Bl

i defined in (4), we compute the
summation of squared coefficients. If the summation is less than the
pruning threshold, the entire core tensor is eliminated. If the prun-
ing threshold is set to zero, a core tensor is eliminated only when all
of its coefficients have been quantized to zero. This tensor pruning
step bears resemblance to coefficient pruning in wavelet-based im-
age compression [5, 10]. Since the input data has spatially varying
details, the coefficients of the core tensors corresponding to smooth
regions of the data are likely to be small. Thus, these core tensors
are more likely to be pruned. The tradeoff between the compression
ratio and PSNR is achieved by adjusting the tensor pruning thresh-
old. Given a PSNR and a quantization step, we perform a search
for the tensor pruning threshold that can achieve the desired PSNR.
When it is necessary to code the coefficients of the remaining core
tensors, there are many existing techniques, such as arithmetic cod-
ing, entropy coding and zero-tree coding [10], from which one can
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Fig. 3. Comparisons of data compression ratios achieved on four
datasets by a bio-orthogonal wavelet transform (dotted), a corre-
sponding wavelet packet transform (dash-dotted), and our hierarchi-
cal tensor approximatin (solid). The datasets include (a) a subset
of the Visible Human dataset, (b) the velocity field of the 4D time-
varying volume dataset, (c) a SPONGE BTF, and (d) a LICHEN BTF.

choose.
Meanwhile, in our hierarchical transformation, we still need to

determine the reduced ranks of the basis matrices at each level. Since
achieving an optimal selection of the reduced ranks at all levels
requires expensive run-time optimization, we have designed a fast
scheme that can achieve a suboptimal solution. At the first level, this
scheme lets the user choose the set of desired ranks, r1

1 , r1
2 , ..., r1

N ,
for the basis matrices. At subsequent levels, each of the ranks fol-
lows a geometric progression. Though being suboptimal, this scheme
has been very effective in our experiments.

4. EXPERIMENTS
We have conducted experiments on a 4D time-varying scientific dataset,
3D medical images in the Visible Human dataset, and 4D bidirec-
tional texture functions (BTFs). The 4D time-varying dataset is a
sequence of simulated 3D velocity fields surrounding five jets. BTFs
represent the changing appearance of a rough surface under a large
number of combinations of lighting and viewing directions [11].
We have compared our hierarchical tensor approximation against
wavelet transforms used in JPEG 2000 [12], wavelet packet trans-
forms presented in [8], and a single-level tensor approximation tech-
nique from [4].

Fig. 3 shows comparisons of compression ratios that can be
achieved by three techniques over a wide range of PSNR values. In
our hierarchical approximation, there are 4-5 levels in the hierarchy.
At the five data points on each curve corresponding to our compres-
sion scheme, the reduced ranks used for the top-level approximation
are respectively 1/2, 1/4, 1/8, 1/16, and 1/32 of the original rank,
and the common ratio between the ranks at two adjacent levels is
always 0.5. Except for very few large PSNR values, our hierarchical
tensor approximation achieved the highest compression ratios. And
in most cases, the compression ratio it can achieve is at least one
order of magnitude larger than that achieved by the wavelet trans-
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(a) Original (b) Single-level (c) Hierarchical
PSNR 29.89 PSNR 31.05

Fig. 4. A comparison of the reconstructed Visible Human dataset
from the single-level tensor approximation in [4] and our hierarchi-
cal tensor approximation. (a) A magnified view of a cross section
of the nose region. (b) A reconstructed image from the single-level
tensor approximation. (c) A reconstructed image from our hierarchi-
cal tensor approximation. (b)&(c) share the same compression ratio
which is 15.7.

(a) Original (b) Wavelet, PSNR=16.77

(c) Wavelet Packet, PSNR=20.54 (d) Hierarchical, PSNR=25.21
Fig. 5. A comparison of reconstructed BTF images from a bio-
orthogonal wavelet transform, an adaptive wavelet packet transform,
and our hierarchical tensor-based representation. (a) An original
BTF image. (b)-(d) Reconstructed images from the wavelet trans-
form, the wavelet packet transform, and our hierarchical tensor ap-
proximation, respectively. The compression ratio for (b)-(d) is 55.

form. Meanwhile, our hierarchical technique also maintains a fairly
significant improvement over the state-of-the-art single-level tensor
approximation technique in [4]. In fact, on the same four datasets
used in Fig. 3, the compression ratios achieved by our technique
are respectively 41.0%, 52.9%, 93.9% and 121.8% higher than those
achieved by the single-level tensor approximation under the same
PSNR values. Note that in our hierarchical tensor approximation,
we estimate the compression ratios according to the storage required
by all remaining tensors and basis matrices in the hierarchy.

Fig. 4 shows a visual comparison between the single-level and
hierarchical schemes on a local region from the Visible Human dataset.
The original data has an extruding feature which the single-level
method has failed to approximate well while the reconstruction from
our hierarchical method still preserves the important details. Fig.
5 shows a visual comparison between wavelet transform, wavelet
packet transform and our multi-level tensor scheme. We can also
conclude that our technique can effectively preserve the fine details
of the BTF and achieve the best visual quality.

5. CONCLUSIONS
In this paper, we developed a compact data approximation technique
based on a hierarchical tensor-based transformation. Resembling a
multiresolution analysis such as wavelet transform, our approxima-
tion represents significant and typically low frequency components
at higher levels of the hierarchy and less important (high frequency)
components at lower levels. Because high frequency components
have smaller spatial support, they can be approximated using shorter
basis vectors. That is one of the reasons we keep subdividing the
residual tensors from level to level and use increasingly shorter basis
matrices to approximate them. Shorter basis matrices impose less
overhead on compression ratio.

More importantly, traditional multiresolution analysis simply ap-
plies scaled versions of a prescribed basis to signals at various dif-
ferent resolutions while our hierarchical approximation extracts ba-
sis matrices specifically tailored for the data being approximated.
Therefore, our method is much better at removing redundancies in a
specific dataset. In practice, we have found that the gained efficiency
of our method in approximating data surpasses the storage overhead
for the adaptively extracted basis matrices.
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