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ABSTRACT 

Contrary to the conventional paradigm of transform decomposition 
followed by quantization, we investigate the computation of two-
dimensional discrete wavelet transforms (DWT) under quantized 
representations of the input source. The proposed method builds 
upon previous research on approximate signal processing and 
revisits the concept of incremental refinement of computation: 
Under a refinement of the source description (with the use of an 
embedded quantizer), the computation of the forward and inverse 
transform refines the previously-computed result thereby leading 
to incremental computation of the output. We study for which 
input sources (and computational-model parameters) can the 
proposed framework derive identical reconstruction accuracy to 
the conventional approach without any incurring computational 
overhead. This is termed successive refinement of computation, 
since all representation accuracies are produced incrementally 
under a single (continuous) computation of the refined input source 
and with no overhead in comparison to the conventional 
calculation approach that specifically targets each accuracy level 
and is not refinable.  
Index Terms— Approximate Signal Processing, Discrete Wavelet 
Transform, Computational Complexity, Incremental Refinement of 
Computation 

1. INTRODUCTION 
A common use of multidimensional transform representations 

is in decorrelating input data and aiding the processing or 
compression of multimedia information, such as images or video 
sequences [1] [2]. Conventional approaches produce the transform 
representation to a maximum degree of precision needed and then 
quantize and process (or compress) the transform coefficients. 
Even though this approach follows the conceptual design of such 
systems in a straightforward manner, it wastes system resources in 
many cases where lossy representations of the input are required, 
e.g. at medium to low-bitrate coding, as noted by several authors 
[3] [5]. This realization led to schemes for computational 
optimization of transforms [3] [6], or scalable computation 
schemes [5], where the computational resources increase 
monotonically under increased precision requirements. These 
studies focused mainly on the mainstream case of the discrete 
cosine transform (DCT) [5] [6], but similar studies can be 
envisaged for other popular transforms [3] such as the discrete 
wavelet transform (DWT) or the Karhunen-Loève transform. 
However, it is hard to precisely estimate in advance the exact 
required quantization precision for the coding or decoding of a 
certain source [5]. Hence, rate-distortion tradeoffs are introduced 
to the problem and one cannot achieve the same representation 
accuracy as the original (albeit wasteful) computation of the 
transform. In addition, from a system perspective, these schemes 

produce an “all or nothing” representation: the computation cannot 
be interrupted when resources become unavailable and retrieve a 
meaningful approximation of the final result. One exception to this 
rule is the work of Winograd and Nawab [4] on incremental 
refinement of the discrete Fourier transform (DFT) where they 
display a first realization of incremental refinement of 
computation. However, apart from the DFT, their work did not 
attempt to extend these schemes to other global transforms, such as 
the DWT, where one faces different challenges.  

We propose a novel approach that tackles these issues. We 
focus on the case of the DWT, as it is a popular choice for 
embedded coding applications [1] [2]. Section 2 proposes a 
bitplane-based computation for the 2-D DWT and analyzes its 
design for the multilevel decomposition and reconstruction. In 
order to analyze the results, a computational model is introduced in 
Section 3. Together with a stochastic modeling framework of the 
input source data from our extended work [10], this model is used 
to test the proposed computation with real video data produced by 
a motion-compensated wavelet video coder in order to practically 
validate the feasibility and the benefits of incremental refinement 
of computation for real-world multimedia data.   

2. LIFTING-BASED DWT UNDER  
INCREMENTAL REFINEMENT OF COMPUTATION 
State-of-the-art entropy coding schemes in scalable coders are 

naturally providing complexity-scalability with respect to the 
compression bitrate. A common misconception about rate-scalable 
video codecs is that they are inherently complexity scalable. While 
this is true to a certain extent, the provided complexity scalability 
range is limited [5]. The fundamental reason behind the lack of 
complexity scalability is the fact that the conventional approaches 
for the computation of the transform and motion compensation do 
not scale in function of the bitrate (which corresponds to a certain 
quantization precision) and do not adapt to content variations and 
content features. We investigate a systematic way of converting 
the traditional computation of the DWT decomposition and 
reconstruction into incremental refinement structures that are not 
only scalable, but can also refine the computation under refined 
quantization of the input.  

A. Description of the Basic Algorithm for Incremental 
Refinement of Computation of the DWT 

For incremental refinement of multidimensional transforms, it 
is essential that the appropriate transform computation scheme is 
used. Separable transforms such as the DWT are conventionally 
implemented via a separable approach consisting of rowwise 
filtering followed by columnwise filtering of the intermediate 
results [1]. However, this approach is not suitable for incremental 
refinement structures, as incremental refinement of the 
intermediate results does not represent a successive approximation 
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of the final transform coefficients [4]. Hence, we need to focus on 
the direct 2-D computation of the DWT. In addition, the most-
efficient computational scheme for the transform realization should 
be used, in order for the results to be relevant with the current 
state-of-the-art. In the case of the DWT, this corresponds to the 
factorization of the analysis and synthesis polyphase matrices 
using the lifting scheme [1]. Consider the 2-D DWT 
decomposition via K  2-D “predict” and “update” lifting steps 
performed for a 2-D image block X  (of R C×  pixels) [7]: 
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where p( )kA , u( )kA  are the k th prediction and update steps 
(1 k K ), respectively, and  is a diagonal scaling matrix in 
order to approximate an orthonormal decomposition.  
The last equation is computing the 2-D DWT as a series of basic 
computation steps in two dimensions, starting from the inner part 
of (1), i.e. p(1) p(1)

TA X A , and working outwards to the final 
result M . If we use embedded double-deadzone quantization of 
the input X  with basic partition cell =1  [1], each quantized 
coefficient quant

,r cx  of the input X  ( 0 r R< , 0 c C< ) is 
represented by: 

 , 1{ }quant
, ,0

( 1) { } 2N r c Nx n
r c n r cn
x x

=
=  (2) 

with ,{ }n r cx  the n th bit of quantized coefficient quant
,r cx  (where 

0 ,{ }r cx  is the least-significant bit), and ,{ }N r cx  is the sign bit. This 
is the popular case of successive approximation quantization 
(SAQ), where, starting from the sign bit, each additional bitplane 
corresponds to increased precision in the approximation of ,r cx . 

For incremental refinement under the SAQ approximation of 
each input sample ,r cx , the proposed computation of the first 
predict step for each bitplane n , 0 n N< , is: 
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where quant,p(1)
la  are the coefficients of the prediction matrix 

p(1)A  and quant,p(1)
2 {0,1},2 {0,1}i jm + +  is the output quadrant of coefficients, 

as computed from the signed quantized values (signed bitplanes) 
,{ }

,(-1) { }N r cx
n r cx  of the input. Equation (3) is a simple copy 

operation between input and output, while (4)-(6) predict the input 
coefficient bit of each case by an addition with a factor that 
depends on: i) the n th signed bit values of the coefficients in the 
spatial neighborhood of 2 {0,1},2 {0,1}{ }

2 {0,1},2 {0,1}(-1) { }N i jx
n i jx+ +

+ + ; ii) 
the quantized representation of the lifting taps quant,p(1)

la  
corresponding to matrix p(1)A , which, for the case of the 9/7 
filter-pair, can be found in [1]. All scalings with 2w , w , are 
implemented with bit-shifting operations and amount to negligible 
complexity in relation to multiplications or additions. Notice that 
there are only a limited number of different inputs possible for the 
input coefficients of (4)–(6), and consequently only a limited 

number of distinct values can be produced. For the case of the 9/7 
filter-bank for example, after a few straightforward calculations we 
find that only 15 input and output values are possible for (4) and 
(6), and only 99 possible input/output values are possible for (5). 
These values can be pre-computed in advance and stored in a small 
lookup table with negligible memory cost. As a result, the entire 
calculation required for the first prediction step given by (3)-(6) is 
performed with lookup tables containing the precomputed result 
for each possible value of a coefficient quant,p(1)

2 [0,1],2 [0,1]i jm + +  of M . 
Once the possible values of both lookup tables have been pre-
computed, there is no further computational overhead for the 
calculation of (3)-(6).  

The second matrix product, p(1)
u(1) u(1)

TA M A , is produced 
by reusing the results of (3)-(6): 
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where quant,u(1)
2 {0,1},2 {0,1}i jm + +  is the output quadrant of coefficients, as 

computed for the output coefficients quant,p(1)
,r cm  of the prediction 

step of (3)-(6). Again, (7) is a simple copy operation, while for (8)-
(10) the update filter coefficients quant,u(1)

la  update the output 
(see [7] for an example instantiation of these coefficients). We do 
not use lookup tables for (8)-(10) because the dynamic range 
grows larger with each matrix product. The remaining steps 

2, ,k K=  to complete the single-level decomposition using the 
2-D lifting formulation of (1) are performed as in (3)-(6) and (7)-
(10) with the replacement of the input with the output of each 
previous step and the replacement of the coefficients quant,p(1)

la , 
quant,u(1)
la  by quant,p( )k

la , quant,u( )k
la , respectively. All steps can be 

performed in-place as in the conventional lifting decomposition, 
with the reuse of the memory for the p(1)M  and u(1)M  arrays. 
Once all the steps have been completed for the current 
decomposition level, the final computation is reordered in the 
output matrix M  in binary-tree (“Mallat”) form and the produced 
results of each bitplane are added to the results of the previous 
(more significant) bitplanes, if existing. Finally, the scaling 
performed at the end of each decomposition level in the 
conventional decomposition can be skipped altogether, or 
incorporated into the encoding stage of each bitplane and as a 
result it is not explicitly considered.  

B. Extension to Multiple Levels and Transform Inversion 
In order to extend the bitplane-based computation to multiple 

levels, we propose a “depth-first” incremental refinement of 
computation by continuing the bitwise lifting-scheme 
computations for all subsequent levels after the termination of one 
bitplane at the first level. This is achieved by reformulating the 
first prediction step of (3)-(6) for all levels beyond one as 
( 0 2li R< , 0 2lj C< , max2 l L ): 
 quant,p(1) quant,u( )
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where we use the outputs u( )kM  of the last update step of the 
previous level and, importantly, at the end of the previous level we 
only perform the reordering and addition to the previous results for 
the high-frequency wavelet coefficients ( quant,u( )

2 ,2 1
k

r cm + , quant,u( )
2 1,2

k
r cm + , 

quant,u( )
2 1,2 1

k
r cm + + , 10 2lr R< , 10 2lc C< ) and do the 

reordering of the low-frequency coefficients ( quant,u( )
2 ,2

k
r cm ) only for 

the final (coarsest) decomposition level maxL . This is due to the 
fact that each intermediate level receives the necessary low-
frequency coefficients of the previous level with the change of 
indexing performed in (11)-(14) in comparison to (3)-(6). 

Notice that, under the changed computation proposed in (11)-
(14), the use of lookup tables becomes cumbersome for the first 
prediction step of all levels beyond one, as the inputs quant,u( )

2 ,2
K

r cm  
may have high dynamic range. Hence the computation is 
performed without the use of lookup tables for these cases. 

Concerning the inverse transform, the process is exactly anti-
symmetric as in the conventional lifting computation: all lifting 
steps are performed in reverse order by solving the forward bitwise 
lifting equations for the coefficients being predicted or updated 
during the forward transform. All the steps are executed in reverse 
order and from the coarsest level to the finest one. 

3. MODELING OF INCREMENTAL REFINEMENT OF 
COMPUTATION 

The proposed algorithm for incremental refinement of 
computation of the DWT present a data-adaptive computation 
where each non-zero input bit causes a certain amount of 
computation towards the completion of the transform 
decomposition. In order to understand the behavior of such 
approaches better, we analyzed the expected performance using 
stochastic source models in our extended work [10].  

We are quantifying the benefits of conventional transform 
calculation versus incremental refinement in terms of the 
computational effort required to complete the decomposition or 
reconstruction task, whether it is for a single bitplane or for the 
entire set of bitplanes. Since arithmetic operations in the proposed 
incremental refinement approaches deal with data with 
significantly-reduced bitwidth in comparison to the conventional 
computation of the DWT that processes all bitplanes at once, we 
propose the following metrics used for the area-time complexity of 
binary multiplication and addition [8]. 

Definition 1: Addition and multiplication of two numbers 
represented with 1N  and 2N  bits, each having an additional bit 
as the sign bit as in (2), requires the following number of 
operations: 

 
if  one of  the two numbers is zero

otherwise         add
1 2

0,  
Cost

max{ , } 1,  N N
=

+
 (15) 

( )( )

if  one of  the two numbers is zero                      

otherwisemult 1+
1 2 1 2

0,  
Cost =

max{ , }+1 min{ , } ,N N N N
(16) 

with 0  a system parameter indicating how “hard” is binary 
multiplication in comparison to binary addition.              

This definition can be intuitively viewed as follows: Assume a 
virtual processing element (PE) able to perform signed addition 
between two bits and the carry information. Addition is 
(maximally) requiring 1 2max{ , } 1N N +  activations of the PE for 

two numbers with 1N  and 2N  bits. Similarly, by viewing 
multiplication as cumulative additions, the number of activations 
of the PE is given by (16), with the system parameter  indicating 
the cost of accumulating the intermediate results. If any of the two 
operands is zero, no operations are required (apart from a minimal 
“zero detection” effort), since the result is trivial.  

Based on the complexity definitions presented here, we derived 
the expected number of arithmetic operations based on stochastic 
source modeling [10]. Due to lack of space, we are only presenting 
a short validation of our results in this paper.  

4. EXPERIMENTAL RESULTS 
We first examine the performance of incremental refinement in 

individual cases of IDWT applied to video frames as well as error 
frames produced by motion-compensated prediction. 
Subsequently, we test the performance of incremental refinement 
of computation for the case of entire video sequences 
decompressed with a scalable video coder.  
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Figure 1. Computation-Distortion results for the original 
(conventional) approach for the computation of the IDWT versus 
the proposed approach. We display two cases: 0.0=  (solid 
lines) and 0.5=  (dashed lines). A representative video frame 
(part a) and an error frame (part b) were used. We also indicate the 
model results and the successive refinement region for 0.5= . 

 
Figure 1 presents representative results from a video sequence 

in terms of computation (measured based on (15), (16) in 
conjunction with our experimental software implementation) 
versus distortion achieved by stopping at several bitplanes (from 

6n =  to 2n = ) and focusing directly at the multilevel 
decomposition with max 4L = . The results of the conventional 
(non-refinable) approach are measured also based on (15), (16) and 
by performing multiple IDWTs. The 9/7 filter-pair was used for 
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these results and throughout this section. We set the precision for 
fixed-point software implementation to 13 bits for the fractional 
part and 13 bits for the integer part (including the sign bit). In the 
results of this section we focus on the “depth-first” approach for 
the proposed incremental refinement since we determined 
experimentally that it performs almost identically to the “breadth-
first” approach and it also represents the generic multilevel 
incremental refinement paradigm where each input source bitplane 
refines the final result of the IDWT.  

Starting with the case of regular (intra) video frames (part (a) 
of Figure 1), we observe that the proposed approach does not 
achieve performance close or inside the successive refinement 
region marked by the computation required by the conventional 
approach. To the contrary, it introduces significant computational 
overhead for both cases of  values tested. However, it appears 
that the incremental refinement case with 0=  is close to the 
conventional case for 0.5=  in the high-distortion (low PSNR) 
region. This is a scenario that could be feasible in practice, since 
the overhead of multiplication versus addition (expressed by 
increased values of ) increases with increased dynamic range, 
and this is indeed the case of the conventional approach versus the 
proposed incremental refinement of computation: the conventional 
computation performs less operations but with a higher dynamic 
range on average, in comparison to the proposed approach. The 
theoretical results of our extended work [10] agree well with the 
experimental results for the case of intra frames seen in Figure 1. 

In general, the results of Figure 1 indicate that the proposed 
approach appears to provide benefits mostly for the case of error 
frames. As a result, it would be interesting to evaluate its 
performance in a coding framework using motion-compensated 
prediction. Representative results are presented in Figure 2 in 
terms of mean PSNR for embedded coding of the Y, U, V channels 
of CIF-resolution video using a scalable video coder [10] with a 
group-of-pictures structure consisting of one intra-frame and 23 
error frames. The corresponding bitrates are within the range of 
128~1024 kbps. We have included as a reference the computation 
required for the conventional separable lifting calculation [1], 
because it is commonly used in practical applications [1] [2]. The 
results indicate that the proposed approach becomes beneficial for 
the medium to low-rate regime corresponding to medium to high 
distortion (28 db - 31 dB in PSNR).  
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Figure 2. Computation-Distortion results for the conventional 
approach versus the proposed approach in the case of video 
sequences. The computation required by the non-refinable 
separable lifting is included as well as a reference. 

 
Figure 2 shows the striking difference in complexity scalability 

between the proposed approach and the conventional computation 
(both the two-dimensional and the separable lifting approach). 
Concerning the low-distortion (high-rate) regime, an overhead 

ranging up to three-fold increase in computation is imposed due to 
the incremental refinement property. We remark though that, since 
the comparison is carried out under the direct 2-D lifting-based 
realization, which is already reducing computation by 40% in 
comparison to the conventional separable lifting-based DWT [7], 
the proposed approach performs significantly better when 
compared to the conventional separable lifting realization. Notice 
that all the results presented for each sequence in Figure 2 are 
produced incrementally by the proposed approach (with respect to 
the IDWT part), while both conventional computations require 
reinitiating the computation for each experimental point reported 
in the figure. This indicates that under dynamic resource 
allocation, the proposed approach can seamlessly refine the output 
representation. Moreover, when system resources become scarce, 
the proposed approach can still produce a high-distortion, albeit 
meaningful, result unlike the conventional computation that is 
constrained to a certain range of computation.  

5. CONCLUSIONS 
We propose a method for incremental computation of the forward 
and inverse DWT under a bitplane-based formulation of the 2-D 
lifting decomposition. This results in a continuous computation for 
the output where, under any termination point, the representation 
corresponding to the provided input source accuracy can be 
retrieved. In addition, to fine-granular and scalable computation, 
the proposed DWT calculation ensures that, should additional 
computational resources be provided, the transform calculation can 
be enhanced from the previously-computed result. A first 
exploration of the subspace of operational parameters for which 
incremental refinement provides comparable or even superior 
computational efficiency in comparison to the conventional (non-
refinable) computation is presented. The results demonstrate that 
successive refinement of computation is feasible for the medium to 
high distortion regime. 
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