
INCREMENTAL REFINEMENT OF COMPUTATION FOR THE
DISCRETE WAVELET TRANSFORM

Yiannis Andreopoulos* and Mihaela van der Schaar+

*Queen Mary University of London

Dept. of Electronic Engineering
Mile End Road, London E1 4NS, United Kingdom

yiannis.a@elec.qmul.ac.uk

+University of California, Los Angeles
Dept. of Electrical Engineering

420 Westwood Plaza, Los Angeles, CA, 90095
mihaela@ee.ucla.edu

ABSTRACT

Contrary to the conventional paradigm of transform decomposition
followed by quantization, we investigate the computation of two-
dimensional discrete wavelet transforms (DWT) under quantized
representations of the input source. The proposed method builds
upon previous research on approximate signal processing and
revisits the concept of incremental refinement of computation:
Under a refinement of the source description (with the use of an
embedded quantizer), the computation of the forward and inverse
transform refines the previously-computed result thereby leading
to incremental computation of the output. We study for which
input sources (and computational-model parameters) can the
proposed framework derive identical reconstruction accuracy to
the conventional approach without any incurring computational
overhead. This is termed successive refinement of computation,
since all representation accuracies are produced incrementally
under a single (continuous) computation of the refined input source
and with no overhead in comparison to the conventional
calculation approach that specifically targets each accuracy level
and is not refinable.
Index Terms— Approximate Signal Processing, Discrete Wavelet
Transform, Computational Complexity, Incremental Refinement of
Computation

1. INTRODUCTION
A common use of multidimensional transform representations

is in decorrelating input data and aiding the processing or
compression of multimedia information, such as images or video
sequences [1] [2]. Conventional approaches produce the transform
representation to a maximum degree of precision needed and then
quantize and process (or compress) the transform coefficients.
Even though this approach follows the conceptual design of such
systems in a straightforward manner, it wastes system resources in
many cases where lossy representations of the input are required,
e.g. at medium to low-bitrate coding, as noted by several authors
[3] [5]. This realization led to schemes for computational
optimization of transforms [3] [6], or scalable computation
schemes [5], where the computational resources increase
monotonically under increased precision requirements. These
studies focused mainly on the mainstream case of the discrete
cosine transform (DCT) [5] [6], but similar studies can be
envisaged for other popular transforms [3] such as the discrete
wavelet transform (DWT) or the Karhunen-Loève transform.
However, it is hard to precisely estimate in advance the exact
required quantization precision for the coding or decoding of a
certain source [5]. Hence, rate-distortion tradeoffs are introduced
to the problem and one cannot achieve the same representation
accuracy as the original (albeit wasteful) computation of the
transform. In addition, from a system perspective, these schemes

produce an “all or nothing” representation: the computation cannot
be interrupted when resources become unavailable and retrieve a
meaningful approximation of the final result. One exception to this
rule is the work of Winograd and Nawab [4] on incremental
refinement of the discrete Fourier transform (DFT) where they
display a first realization of incremental refinement of
computation. However, apart from the DFT, their work did not
attempt to extend these schemes to other global transforms, such as
the DWT, where one faces different challenges.

We propose a novel approach that tackles these issues. We
focus on the case of the DWT, as it is a popular choice for
embedded coding applications [1] [2]. Section 2 proposes a
bitplane-based computation for the 2-D DWT and analyzes its
design for the multilevel decomposition and reconstruction. In
order to analyze the results, a computational model is introduced in
Section 3. Together with a stochastic modeling framework of the
input source data from our extended work [10], this model is used
to test the proposed computation with real video data produced by
a motion-compensated wavelet video coder in order to practically
validate the feasibility and the benefits of incremental refinement
of computation for real-world multimedia data.

2. LIFTING-BASED DWT UNDER
INCREMENTAL REFINEMENT OF COMPUTATION
State-of-the-art entropy coding schemes in scalable coders are

naturally providing complexity-scalability with respect to the
compression bitrate. A common misconception about rate-scalable
video codecs is that they are inherently complexity scalable. While
this is true to a certain extent, the provided complexity scalability
range is limited [5]. The fundamental reason behind the lack of
complexity scalability is the fact that the conventional approaches
for the computation of the transform and motion compensation do
not scale in function of the bitrate (which corresponds to a certain
quantization precision) and do not adapt to content variations and
content features. We investigate a systematic way of converting
the traditional computation of the DWT decomposition and
reconstruction into incremental refinement structures that are not
only scalable, but can also refine the computation under refined
quantization of the input.

A. Description of the Basic Algorithm for Incremental
Refinement of Computation of the DWT

For incremental refinement of multidimensional transforms, it
is essential that the appropriate transform computation scheme is
used. Separable transforms such as the DWT are conventionally
implemented via a separable approach consisting of rowwise
filtering followed by columnwise filtering of the intermediate
results [1]. However, this approach is not suitable for incremental
refinement structures, as incremental refinement of the
intermediate results does not represent a successive approximation

IV - 531-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

of the final transform coefficients [4]. Hence, we need to focus on
the direct 2-D computation of the DWT. In addition, the most-
efficient computational scheme for the transform realization should
be used, in order for the results to be relevant with the current
state-of-the-art. In the case of the DWT, this corresponds to the
factorization of the analysis and synthesis polyphase matrices
using the lifting scheme [1]. Consider the 2-D DWT
decomposition via K 2-D “predict” and “update” lifting steps
performed for a 2-D image block X (of R C× pixels) [7]:

(((((

)))))
p(1)u() p() u(1)

p(1) u(1) p() u()

K K

T T T T T
K K

=M A A A A

X A A A A
. (1)

where p()kA , u()kA are the k th prediction and update steps
(1 k K), respectively, and is a diagonal scaling matrix in
order to approximate an orthonormal decomposition.
The last equation is computing the 2-D DWT as a series of basic
computation steps in two dimensions, starting from the inner part
of (1), i.e. p(1) p(1)

TA X A , and working outwards to the final
result M . If we use embedded double-deadzone quantization of
the input X with basic partition cell =1 [1], each quantized
coefficient quant

,r cx of the input X (0 r R< , 0 c C<) is
represented by:

 , 1{ }quant
, ,0

(1) { } 2N r c Nx n
r c n r cn
x x

=
= (2)

with ,{ }n r cx the n th bit of quantized coefficient quant
,r cx (where

0 ,{ }r cx is the least-significant bit), and ,{ }N r cx is the sign bit. This
is the popular case of successive approximation quantization
(SAQ), where, starting from the sign bit, each additional bitplane
corresponds to increased precision in the approximation of ,r cx .

For incremental refinement under the SAQ approximation of
each input sample ,r cx , the proposed computation of the first
predict step for each bitplane n , 0 n N< , is:
 2 ,2quant,p(1) { }

2 ,22 ,2 (-1) { }N i jx
n i ji jm x= (3)

(
)

p(1)2 ,2 1

p(1)
2 ,2() p(1)

p(1)

1quant,p(1) quant,p(1){ }
2 ,2 12 ,2 1 0

{ }
2 ,2()

2 (-1) { } +

2 (-1) { } 2

N i j

N i j l P l

Txn
n i ji j ll

x sn
n i j l P

m x a

x

+

+

++ =

+

=
 (4)

()

p(1)2 1,2 1

p(1)
2 1,2() p(1)

p(1) p(1)

1quant,p(1) quant,p(1){ }
2 1,2 12 1,2 1 0

{ } quant,p(1)
2 1,2() 2() ,2 1

2 (-1) { } +

2 (-1) { } + 2

N i j

N i j l P l

Txn
n i ji j ll

x sn
n i j l P i l P j

m x a

x m

+ +

+ +

+ ++ + =

+ + + +

=

 (5)

(
)

p(1)2 1,2

p(1)
2() ,2p(1)

p(1)

1quant,p(1) quant,p(1){ }
2 1,22 1,2 0

{ }
2() ,2

2 (-1) { } +

2 (-1) { } 2

N i j

N i l P j l

Txn
n i ji j ll

x sn
n i l P j

m x a

x

+

+

++ =

+

=
 (6)

where quant,p(1)
la are the coefficients of the prediction matrix

p(1)A and quant,p(1)
2 {0,1},2 {0,1}i jm + + is the output quadrant of coefficients,

as computed from the signed quantized values (signed bitplanes)
,{ }

,(-1) { }N r cx
n r cx of the input. Equation (3) is a simple copy

operation between input and output, while (4)-(6) predict the input
coefficient bit of each case by an addition with a factor that
depends on: i) the n th signed bit values of the coefficients in the
spatial neighborhood of 2 {0,1},2 {0,1}{ }

2 {0,1},2 {0,1}(-1) { }N i jx
n i jx+ +

+ + ; ii)
the quantized representation of the lifting taps quant,p(1)

la
corresponding to matrix p(1)A , which, for the case of the 9/7
filter-pair, can be found in [1]. All scalings with 2w , w , are
implemented with bit-shifting operations and amount to negligible
complexity in relation to multiplications or additions. Notice that
there are only a limited number of different inputs possible for the
input coefficients of (4)–(6), and consequently only a limited

number of distinct values can be produced. For the case of the 9/7
filter-bank for example, after a few straightforward calculations we
find that only 15 input and output values are possible for (4) and
(6), and only 99 possible input/output values are possible for (5).
These values can be pre-computed in advance and stored in a small
lookup table with negligible memory cost. As a result, the entire
calculation required for the first prediction step given by (3)-(6) is
performed with lookup tables containing the precomputed result
for each possible value of a coefficient quant,p(1)

2 [0,1],2 [0,1]i jm + + of M .
Once the possible values of both lookup tables have been pre-
computed, there is no further computational overhead for the
calculation of (3)-(6).

The second matrix product, p(1)
u(1) u(1)

TA M A , is produced
by reusing the results of (3)-(6):

 quant,u(1) quant,p(1)
2 1,2 1 2 1,2 1i j i jm m+ + + += (7)

() u(1)u(1)

u(1)

quant,u(1) quant,p(1) quant,u(1) quant,p(1)
2 1,2 2 1,2 2 1,2()0

= + 2 l
T s

i j i j l i j l Pl
m m a m+ + + +=

 (8)

()

u(1)

u(1)

u(1) u(1)

quant,u(1) quant,p(1) quant,u(1)
2 ,2 2 ,2 0

quant,p(1) quant,u(1)
2 ,2() 2() ,2 2 l

T
i j i j ll

s
i j l P i l P j

m m a

m m

=

+ +

= +

+
 (9)

() u(1)u(1)

u(1)

quant,u(1) quant,p(1) quant,u(1) quant,p(1)
2 ,2 1 2 ,2 1 2() ,2 10

= + 2 l
T s

i j i j l i l P jl
m m a m+ + + +=

 (10)

where quant,u(1)
2 {0,1},2 {0,1}i jm + + is the output quadrant of coefficients, as

computed for the output coefficients quant,p(1)
,r cm of the prediction

step of (3)-(6). Again, (7) is a simple copy operation, while for (8)-
(10) the update filter coefficients quant,u(1)

la update the output
(see [7] for an example instantiation of these coefficients). We do
not use lookup tables for (8)-(10) because the dynamic range
grows larger with each matrix product. The remaining steps

2, ,k K= to complete the single-level decomposition using the
2-D lifting formulation of (1) are performed as in (3)-(6) and (7)-
(10) with the replacement of the input with the output of each
previous step and the replacement of the coefficients quant,p(1)

la ,
quant,u(1)
la by quant,p()k

la , quant,u()k
la , respectively. All steps can be

performed in-place as in the conventional lifting decomposition,
with the reuse of the memory for the p(1)M and u(1)M arrays.
Once all the steps have been completed for the current
decomposition level, the final computation is reordered in the
output matrix M in binary-tree (“Mallat”) form and the produced
results of each bitplane are added to the results of the previous
(more significant) bitplanes, if existing. Finally, the scaling
performed at the end of each decomposition level in the
conventional decomposition can be skipped altogether, or
incorporated into the encoding stage of each bitplane and as a
result it is not explicitly considered.

B. Extension to Multiple Levels and Transform Inversion
In order to extend the bitplane-based computation to multiple

levels, we propose a “depth-first” incremental refinement of
computation by continuing the bitwise lifting-scheme
computations for all subsequent levels after the termination of one
bitplane at the first level. This is achieved by reformulating the
first prediction step of (3)-(6) for all levels beyond one as
(0 2li R< , 0 2lj C< , max2 l L):
 quant,p(1) quant,u()

2 ,2 4 ,4
K

i j i jm m= (11)

() p(1)p(1)

p(1)

1quant,p(1) quant,u() quant,p(1) quant,u()
2 ,2 1 4 ,4 2 4 ,4() 20

= + 2 l
TK K s

i j i j l i j l Pl
m m a m+ + +=

 (12)

IV - 54

()

p(1)

p(1)

p(1) p(1)

1quant,p(1) quant,u() quant,p(1)
2 1,2 1 4 2,4 2 0

quant,u() quant,p(1)
4 4,4() 2 2() ,2 1 2 l

TK
i j i j ll

K s
i j l P i l P j

m m a

m m

+ + + + =

+ + + +

= +

+
 (13)

() p(1)p(1)

p(1)

1quant,p(1) quant,u() quant,p(1) quant,u()
2 1,2 4 2,4 4() 2 ,40

= + 2 l
TK K s

i j i j l i l P jl
m m a m+ + +=

 (14)
where we use the outputs u()kM of the last update step of the
previous level and, importantly, at the end of the previous level we
only perform the reordering and addition to the previous results for
the high-frequency wavelet coefficients (quant,u()

2 ,2 1
k

r cm + , quant,u()
2 1,2

k
r cm + ,

quant,u()
2 1,2 1

k
r cm + + , 10 2lr R< , 10 2lc C<) and do the

reordering of the low-frequency coefficients (quant,u()
2 ,2

k
r cm) only for

the final (coarsest) decomposition level maxL . This is due to the
fact that each intermediate level receives the necessary low-
frequency coefficients of the previous level with the change of
indexing performed in (11)-(14) in comparison to (3)-(6).

Notice that, under the changed computation proposed in (11)-
(14), the use of lookup tables becomes cumbersome for the first
prediction step of all levels beyond one, as the inputs quant,u()

2 ,2
K

r cm
may have high dynamic range. Hence the computation is
performed without the use of lookup tables for these cases.

Concerning the inverse transform, the process is exactly anti-
symmetric as in the conventional lifting computation: all lifting
steps are performed in reverse order by solving the forward bitwise
lifting equations for the coefficients being predicted or updated
during the forward transform. All the steps are executed in reverse
order and from the coarsest level to the finest one.

3. MODELING OF INCREMENTAL REFINEMENT OF
COMPUTATION

The proposed algorithm for incremental refinement of
computation of the DWT present a data-adaptive computation
where each non-zero input bit causes a certain amount of
computation towards the completion of the transform
decomposition. In order to understand the behavior of such
approaches better, we analyzed the expected performance using
stochastic source models in our extended work [10].

We are quantifying the benefits of conventional transform
calculation versus incremental refinement in terms of the
computational effort required to complete the decomposition or
reconstruction task, whether it is for a single bitplane or for the
entire set of bitplanes. Since arithmetic operations in the proposed
incremental refinement approaches deal with data with
significantly-reduced bitwidth in comparison to the conventional
computation of the DWT that processes all bitplanes at once, we
propose the following metrics used for the area-time complexity of
binary multiplication and addition [8].

Definition 1: Addition and multiplication of two numbers
represented with 1N and 2N bits, each having an additional bit
as the sign bit as in (2), requires the following number of
operations:

if one of the two numbers is zero

otherwise add
1 2

0,
Cost

max{ , } 1, N N
=

+
 (15)

()()

if one of the two numbers is zero

otherwisemult 1+
1 2 1 2

0,
Cost =

max{ , }+1 min{ , } ,N N N N
(16)

with 0 a system parameter indicating how “hard” is binary
multiplication in comparison to binary addition.

This definition can be intuitively viewed as follows: Assume a
virtual processing element (PE) able to perform signed addition
between two bits and the carry information. Addition is
(maximally) requiring 1 2max{ , } 1N N + activations of the PE for

two numbers with 1N and 2N bits. Similarly, by viewing
multiplication as cumulative additions, the number of activations
of the PE is given by (16), with the system parameter indicating
the cost of accumulating the intermediate results. If any of the two
operands is zero, no operations are required (apart from a minimal
“zero detection” effort), since the result is trivial.

Based on the complexity definitions presented here, we derived
the expected number of arithmetic operations based on stochastic
source modeling [10]. Due to lack of space, we are only presenting
a short validation of our results in this paper.

4. EXPERIMENTAL RESULTS
We first examine the performance of incremental refinement in

individual cases of IDWT applied to video frames as well as error
frames produced by motion-compensated prediction.
Subsequently, we test the performance of incremental refinement
of computation for the case of entire video sequences
decompressed with a scalable video coder.

(a)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

22

24

26

28

30

32

34

36

38

40

42
9/7 Filter-pair, Coastguard Frame, 4 levels

Costops(4,[2,6]) (Operations/pixel)

PS
NR

 (d
B)

Exper. Conventional, k=0.0
Exper. Conventional, k=0.5
Exper. Increm. Ref., k=0.0
Exper. Increm. Ref., k=0.5
Theor. Increm. Ref., k=0.0
Theor. Increm. Ref., k=0.5

ovehead
region

successive
refinement
region

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
22

24

26

28

30

32

34

36

38

40

42
9/7 Filter-pair, Coastguard Frame, 4 levels

Costops(4,[2,6]) (Operations/pixel)

PS
NR

 (d
B)

Exper. Conventional, k=0.0
Exper. Conventional, k=0.5
Exper. Increm. Ref., k=0.0
Exper. Increm. Ref., k=0.5
Theor. Increm. Ref., k=0.0
Theor. Increm. Ref., k=0.5

ovehead
region

successive
refinement
region

(b)
0 200 400 600 800 1000 1200 1400 1600 1800 2000

36.5

37

37.5

38

38.5

39

39.5
9/7 Filter-pair, Coastguard Error Frame, 4 levels

Costops(4,[2,6]) (Operations/pixel)

PS
NR

 (d
B)

Exper. Conventional, k=0.0
Exper. Conventional, k=0.5
Exper. Increm. Ref., k=0.0
Exper. Increm. Ref., k=0.5
Theor. Increm. Ref., k=0.0
Theor. Increm. Ref., k=0.5successive

refinement
region

overhead
region

0 200 400 600 800 1000 1200 1400 1600 1800 2000
36.5

37

37.5

38

38.5

39

39.5
9/7 Filter-pair, Coastguard Error Frame, 4 levels

Costops(4,[2,6]) (Operations/pixel)

PS
NR

 (d
B)

Exper. Conventional, k=0.0
Exper. Conventional, k=0.5
Exper. Increm. Ref., k=0.0
Exper. Increm. Ref., k=0.5
Theor. Increm. Ref., k=0.0
Theor. Increm. Ref., k=0.5successive

refinement
region

overhead
region

Figure 1. Computation-Distortion results for the original
(conventional) approach for the computation of the IDWT versus
the proposed approach. We display two cases: 0.0= (solid
lines) and 0.5= (dashed lines). A representative video frame
(part a) and an error frame (part b) were used. We also indicate the
model results and the successive refinement region for 0.5= .

Figure 1 presents representative results from a video sequence

in terms of computation (measured based on (15), (16) in
conjunction with our experimental software implementation)
versus distortion achieved by stopping at several bitplanes (from

6n = to 2n =) and focusing directly at the multilevel
decomposition with max 4L = . The results of the conventional
(non-refinable) approach are measured also based on (15), (16) and
by performing multiple IDWTs. The 9/7 filter-pair was used for

IV - 55

these results and throughout this section. We set the precision for
fixed-point software implementation to 13 bits for the fractional
part and 13 bits for the integer part (including the sign bit). In the
results of this section we focus on the “depth-first” approach for
the proposed incremental refinement since we determined
experimentally that it performs almost identically to the “breadth-
first” approach and it also represents the generic multilevel
incremental refinement paradigm where each input source bitplane
refines the final result of the IDWT.

Starting with the case of regular (intra) video frames (part (a)
of Figure 1), we observe that the proposed approach does not
achieve performance close or inside the successive refinement
region marked by the computation required by the conventional
approach. To the contrary, it introduces significant computational
overhead for both cases of values tested. However, it appears
that the incremental refinement case with 0= is close to the
conventional case for 0.5= in the high-distortion (low PSNR)
region. This is a scenario that could be feasible in practice, since
the overhead of multiplication versus addition (expressed by
increased values of) increases with increased dynamic range,
and this is indeed the case of the conventional approach versus the
proposed incremental refinement of computation: the conventional
computation performs less operations but with a higher dynamic
range on average, in comparison to the proposed approach. The
theoretical results of our extended work [10] agree well with the
experimental results for the case of intra frames seen in Figure 1.

In general, the results of Figure 1 indicate that the proposed
approach appears to provide benefits mostly for the case of error
frames. As a result, it would be interesting to evaluate its
performance in a coding framework using motion-compensated
prediction. Representative results are presented in Figure 2 in
terms of mean PSNR for embedded coding of the Y, U, V channels
of CIF-resolution video using a scalable video coder [10] with a
group-of-pictures structure consisting of one intra-frame and 23
error frames. The corresponding bitrates are within the range of
128~1024 kbps. We have included as a reference the computation
required for the conventional separable lifting calculation [1],
because it is commonly used in practical applications [1] [2]. The
results indicate that the proposed approach becomes beneficial for
the medium to low-rate regime corresponding to medium to high
distortion (28 db - 31 dB in PSNR).

Coastguard

26

28

30

32

34

36

38

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

Computation (operations/pixel)

PS
N

R
 (d

B
)

Approximate Computation
Conventional
Conventional, separable lifting

Figure 2. Computation-Distortion results for the conventional
approach versus the proposed approach in the case of video
sequences. The computation required by the non-refinable
separable lifting is included as well as a reference.

Figure 2 shows the striking difference in complexity scalability

between the proposed approach and the conventional computation
(both the two-dimensional and the separable lifting approach).
Concerning the low-distortion (high-rate) regime, an overhead

ranging up to three-fold increase in computation is imposed due to
the incremental refinement property. We remark though that, since
the comparison is carried out under the direct 2-D lifting-based
realization, which is already reducing computation by 40% in
comparison to the conventional separable lifting-based DWT [7],
the proposed approach performs significantly better when
compared to the conventional separable lifting realization. Notice
that all the results presented for each sequence in Figure 2 are
produced incrementally by the proposed approach (with respect to
the IDWT part), while both conventional computations require
reinitiating the computation for each experimental point reported
in the figure. This indicates that under dynamic resource
allocation, the proposed approach can seamlessly refine the output
representation. Moreover, when system resources become scarce,
the proposed approach can still produce a high-distortion, albeit
meaningful, result unlike the conventional computation that is
constrained to a certain range of computation.

5. CONCLUSIONS
We propose a method for incremental computation of the forward
and inverse DWT under a bitplane-based formulation of the 2-D
lifting decomposition. This results in a continuous computation for
the output where, under any termination point, the representation
corresponding to the provided input source accuracy can be
retrieved. In addition, to fine-granular and scalable computation,
the proposed DWT calculation ensures that, should additional
computational resources be provided, the transform calculation can
be enhanced from the previously-computed result. A first
exploration of the subspace of operational parameters for which
incremental refinement provides comparable or even superior
computational efficiency in comparison to the conventional (non-
refinable) computation is presented. The results demonstrate that
successive refinement of computation is feasible for the medium to
high distortion regime.

REFERENCES
[1] JPEG2000: Image Compression Fundamentals, Standards

and Practice, D. Taubman, M. Marcellin, Kluwer Acad. Pubs,
2002.

[2] J.-R. Ohm, "Advances in scalable video coding," Proc. of the
IEEE, vol. 93, pp. 42-56, Jan. 2005.

[3] V. K. Goyal, and M. Vetterli, “Computation-distortion
characteristics of block transform coding,” Proc. IEEE Int.
Conf. on Accoust., Speech, and Signal Proc., ICASSP-97, vol.
4, pp. 2729-2732, April 1997.

[4] J. Winograd and S. H. Nawab, “Incremental refinement of
DFT and STFT approximations,” IEEE Signal Proc. Letters,
vol. 2, no. 2, pp. 25-27, Feb. 1995.

[5] K. Lengwehasatit and A. Ortega, “Scalable variable
complexity approximate forward DCT,” IEEE Trans. on Circ.
and Syst. for Video Technol., vol. 14, no. 11, pp. 1236-1248,
Nov. 2004.

[6] Z. Wang, “Pruning the fast discrete cosine transform,” IEEE
Trans. on Comm., vol. 39, no. 5, pp. 640-643, May 1991.

[7] H. Meng and Z. Wang, “Fast spatial combinative lifting
algorithm of wavelet transform using the 9/7 filter for image
block compression,” IEE Electronics Letters, vol. 36, no. 21,
pp. 1766-1767, Oct. 2000.

[8] R. P. Brent and H. T. Kung, “The area-time complexity of
binary multiplication,” J. of the Assoc. for Comp. Machin.,
vol. 28, no. 3, pp. 512-534, Jul. 1981.

[9] W. H. R. Equitz and T. Cover, “Successive refinement of
information,” IEEE Trans. on Inform. Theory, vol. 37, no. 2,
pp. 269-275, Mar. 1991.

[10] Y. Andreopoulos and M. van der Schaar "Incremental
refinement of computation for the discrete wavelet
transform," IEEE Trans. on Signal Process., to appear.

IV - 56

