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ABSTRACT

This paper presents a new method for computing the Feature-

adapted Radon and Beamlet transforms [1] in a fast and accu-

rate way. These two transforms can be used for detecting fea-

tures running along lines or piecewise constant curves. The

main contribution of this paper is to unify the Fast Slant Stack

method, introduced in [2], with linear filtering technique in

order to define what we call the Feature-adapted Fast Slant

Stack. If the desired feature is chosen to belong to the class of

steerable filters, our method can be achieved in O(N log(N)),
where N = n2 is the number of pixels. This new method

leads to an efficient implementation of both Feature-adapted

Radon and Beamlet transforms, that outperforms our previous

works [1]. Our method has been developed in the context of

biological imaging to detect image features lying along curves

like edges or ridges as well as any kind of features that can be

designed by a priori knowledge.

Index Terms— Fast slant stack, radon transform, beamlet

transform, steerable filters, features detection.

1. INTRODUCTION

The problem of detecting curvilinear objects in images arises

in various areas of image processing and computer vision,

since such kind of objects occur in every natural and synthetic

images, like contours of objects, roads in aerial imaging or

DNA filaments in biological microscopy.

Commonly, curvilinear objects are considered as 1-dimen-

sional manifolds that have a specific profile running along a

smooth curve. The shape of this profile may be an edge- or

a ridge-like feature. It can also be represented by more com-

plex designed features. For example, in the context of DNA

filament analysis in fluorescent microscopy, it is acceptable

to consider the transverse dimension of a filament to be small

relative to the PSF width of the microscope. Hence, the shape

of the profile may be accurately approximate by a PSF model.

A recent study of such models for various types of micro-

scopes can be found in [3].

One way to detect curvilinear objects is to track locally

the feature of the curve-profile; linear filtering or template

matched filtering are well-known techniques for doing so. The

classical Canny edge detector [4] and more recently detectors

designed in [5] are based on such linear filtering techniques.

They involve the computation of inner-products with shifted

and/or rotated version of the feature template at every point

in the image. High response at a given position in the image

means that the considered area has a similarity with the fea-

ture template. Filtering is usually followed by a non-maxima

suppression and a thresholding step in order to extract the ob-

jects. The major drawbacks of such approaches come from

the fact that linear filtering is based on local operators: it is

highly sensitive to noise but not sensitive to the underlying

smoothness of the curve, which is a typical non-local prop-

erty of curvilinear objects.

Alternativaly, the Radon transform is a powerful tool whi-

ch may be used for line detection. Also known as the Hough

transform in the case of discrete binary images, it performs a

mapping from the image space into a line parameter space by

computing line integrals. Formally, given an image f defined

on a sub-space of R2, for every line parameter (t, θ), with

t ∈ R and θ ∈ [0, π), the continuous Radon transform is

defined by

R[f ](t, θ) =
∫

f(x, y)δ(t− x cos(θ) + y sin(θ))dxdy. (1)

Much attention has been given over the last twenty years to

adapt this transform to digital arrays, i.e. when f is repre-

sented by a discrete array I = I(u, v) : −n/2 ≤ u, v < n/2.

There are two distinct approaches to compute equation (1)

efficiently on digital arrays. The first one is the multiscale

approach. This approach splits the image domain by recur-

sive partitioning into dyadic squares. Radon coefficients are

then computed by recombining those which have been al-

ready computed on smaller squares. The major drawback of

this approach in the discrete case is the recombination process

on digital grids that introduces approximations. The second

kind of approach is the Fourier-based approach. It exploits the

projection-slice theorem which says that the 1-dimensional

constant θ-slice of the Radon transform (R[f ](t, θ) : −∞ <
t < ∞) and the 1-dimensional radial slice of the Fourier

transform make a 1-dimensional Fourier transform pair. The

major drawback of this method is again the discretization,

where points of a radial slice do not intersect the cartesian

grid points of the Fourier space and hence involves interpola-

tions.
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Recently, a novel Fourier-based approach has been pro-

posed, the Fast Slant Stack methodology [2]. It avoids the

drawback mentioned above by introducing a discrete defini-

tion of equation (1) and by carefully choosing a set of grid-
friendliness lines. It yields to a fast, geometrically and al-

gebraically exact method to compute the Radon transform in

O(N log(N)), where N = n2 is the number of pixels.

The main objective of this article is to compute (R[f ∗
hθ](t, θ) : −∞ < t < ∞), for a given set of angles that

fully span the range of orientations. h is a feature template

representing a specific 2-dimensional line profile, which can

be an edge, a ridge or a more complex image feature. Our

main result is that, thanks to the Fast Slant Stack technique

presented above, for a certain class of filters h, our objective

can be fulfilled efficiently in O(N log(N)). Section 2 gives

some key elements to understand the underlying mechanisms

of the Fast Slant Stack methodology. Section 3 presents our

contribution while section 4 presents an extension of our con-

tribution to the Beamlet transform [6], which can be viewed

as a multiscale Radon transform.

2. FAST SLANT STACK

Our methodology being based on the Fast Slant Stack ap-

proach [2], we recall here some of its key elements and re-

fer the reader to [2] for more details. A basically horizon-
tal line is a line of the form y = tan(θ)x + t, where the

slope | tan(θ)| ≤ 1. Notice that the methodology described

in the sequel of this paper could be applied directly to the

complementary set of basically vertical lines of form x =
tan(θ)y + t. The Radon transform associated with this set of

line is

R[I](t, θ) =
∑

u

Ĩ(u, tan(θ)u + t). (2)

where Ĩ(u, y) is an interpolant, that takes discrete values in

the first argument and continous values in the second argu-

ment. The 1-dimensional interpolation is realized thanks to a

Dirichlet kernel (see [2] for complete details). The parametriza-

tion of the Radon space is chosen as follows: one considers

only the lines having an intercept −n ≤ t < n and the set of

angles θ = arctan(2l/n),−n/2 ≤ l < n/2. According to

this set of angles, the fundamental property of equation (2) is

driven by the following result:

Theorem 1 (Projection-Slice Theorem) Define the 2-dimen-
sional Fourier transform of the array I via:

Î(k1, k2) =
∑
u,v

I(u, v) exp{−i
π

n
(uk1 + vk2)},

where −n ≤ k1, k2 < n. Then, for each fixed θ = arctan(2l/n),
−n/2 ≤ l < n/2, the 2n numbers

R[I](t, θ), −n ≤ t < n,

are a 1-dimensional discrete Fourier transform pair with the
2n numbers

Î(π
k

n
tan(θ), π

k

n
), −n ≤ k < n.

The key point of the Fast Slant Stack method is the special

nature of the angles θ chosen above. Using Theorem (1),

one has a connection between Radon values and a set of spa-

tial frequencies ξl,k = (π k
n

2l
n , π k

n ) with −n ≤ k < n and

−n/2 ≤ l < n/2. This is a special non-Cartesian pointset in

frequency domain which has been known as the Pseudopolar

grid, and is illustrated in Fig 1.

Fig. 1. The Pseudopolar Grid for n = 8

This pointset can be efficiently computed according to the

Pseudo-Polar Fast Fourier transform [2], noted P . P[I] is an

array of 2n rows by n columns where the lth column refers

to the values Î(π k
n

2l
n , π k

n ), −n ≤ k < n. Hence, thanks to

theorem (1), the Discrete Radon transform of equation (2) is

reduced to R = F−1 ◦ P , where F−1 denotes the 1-dimen-

sional inverse Fourier transform performed on each column

of P[I].

3. FEATURE-ADAPTED FAST SLANT STACK

Consider a filter h representing a 2-dimensional line-profile.

Let hθ be a rotated version of h in the direction θ:

hθ(x, y) = h(Rθ(x,y)), (3)

where Rθ is the 2-dimensional rotation matrix of angle θ. In

a first step, we filter the image I with hθ before computing

equation (2). For a fixed θ, we have

R[I ∗ hθ](t, θ) =
∑

u

Ĩ ∗ hθ(u, tan(θ)u + t). (4)

A high coefficient means that the local feature runs signif-

icantly along the line y = tan(θ)x + t. Equation (4) can

be obtained efficiently by Theorem (1). We call this trans-

form the Feature-adapted Fast Slant Stack. In general, the

IV - 58



computation of all these coefficients is not achievable, since

it requires to convolve the image and to perform Pseudo-Polar

Fourier transform as many times as the number of θ’s, i.e. 2n
times. For the special case where h is selected to be within

the class of steerable filters [7], we can write hθ as a linear

combination of basis filters:

hθ(x, y) =
M∑

j=1

φj(θ)hθj (x, y), (5)

where φj’s are interpolation functions that only depend on θ
and the basis filters hθj ’s are independent of θ. A convolution

of an image with a steerable filter of arbitrary orientation is

then equal to a finite weighted sum of convolution of the same

image with the basis filters. As a result, we state the following

result:

Proposition 1 For each fixed θ = arctan(2l/n), −n/2 ≤
l < n/2, the 2n numbers

R[I ∗ hθ](t, θ), −n ≤ t < n,

are a 1-dimensional discrete Fourier transform pair with the
2n numbers

M∑
j=1

φj(θ)Î ∗ hθj (π
k

n
tan(θ), π

k

n
), −n ≤ k < n.

The proof is given in Appendix A. Thanks to this result,

we compute equation (4) for every angle, as follows: we

first convolve the image as many times as the number of ba-

sis filters composing our filter h. This number is typically

very small (< 10). On each filtered image, we compute the

Pseudo-Polar Fourier transform and then, for each angle θ =
arctan(2l/n), we extract the lth column of each transforms

and combine them thanks to Proposition (1). Finally, we per-

form 1-dimensional inverse Fourier transforms on each result-

ing series. All these steps can be performed in O(N log(N)).
A graphical representation of the implementation is given in

Fig 2.
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Fig. 2. Feature-adapted Fast Slant Stack diagram.

4. EXTENSION TO BEAMLET TRANSFORM

Beamlet transform [6] can be viewed as a multiscale Radon

transform. It defines a set of dyadically organized line seg-

ments occupying a range of dyadic locations and scales, and

spanning a full range of orientations. This system of line seg-

ments, called beamlets, have both their end-points lying on

dyadic squares that are obtained by recursive partitionning of

the image domain (see [6] for complete details). The collec-

tion of beamlets has a O(N2 log(N)) cardinality. The under-

lying idea of the Beamlet transform is to compute line inte-

grals only on this smaller set, which is an efficient substitute

of the entire set of segments for it can approximate any seg-

ment by a finite chain of beamlets. Beamlet chaining tech-

nique also provides an easy way to approximate piecewise

constant curves.

In [1], we used a technique akin to the one presented here,

in that we embedded a profile that is represented by a steer-

able filter into the Beamlet transform. A two-scale recursion

technique in order to compute beamlet coefficients was used,

where beamlets at a given scale can be obtained by the com-

bination of beamlets coefficients computed at smaller scales.

This strategy is quite fast at the expense of a significant mem-

ory load and leads to numerical approximations. Here we

propose that the Feature-adapted Beamlet transform can be

computed thanks to the method presented in section 3, since

the set of orientations implicitly defined by the beamlet set

exactly matches the θ′s defined throughout this paper. Hence,

the Feature-adapted Fast Slant Stack can be applied on every

dyadic square that partitions the image domain to compute the

Feature-adapted Beamlet transform. Applications for curvi-

linear objects detection in noisy images can be found in [1];

our method presented here can be used instead.

5. CONCLUSION

In this paper, we have presented a method for computing the

Feature-adapted Radon and Beamlet transforms in a fast and

accurate way. These two transforms can be used for detect-

ing features running along lines or piecewise constant curves.

Our contribution unifies the Fast Slant Stack method with

the steerable filtering technique. It leads to an original and

efficient implementation of the Feature-adapted Radon and

Beamlet transforms. This method is very general for repre-

senting curves carrying any kind of features designed by a
priori knowledge, under the hypothesis that this feature is se-

lected within the class of steerable filters. This work is a first

step towards a more in-depth investigation of the method. We

point out that precise statistical analysis of the coefficients

can be easily performed due to the accuracy of the Fast Slant

Stack method. This is a crucial advantage since it makes it

possible to control the number of false alarms in a detection

application [1].
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APPENDIX A

In order to prove Proposition (1), a detailed presentation

of the Pseudo-Polar Fourier transform is needed. The Pseudo-

Polar Fourier transform proceeds in two stages: first it com-

putes the regular Fourier transform of the image on the carte-

sian grid (π
nk1,

π
nk2), for −n ≤ k1, k2 < n. Second, for each

rows k, it applies the following operator:

Gn,k =
1
m

.Fα ◦ F−1,

where Fα is the 1-dimensional Fractional Fourier transform

[8] with α = 2k/n. This operator takes a serie of 2n values

and provides n values with correspond to the kth row of the

Pseudo-Polar Fourier transform (see [2] for complete details).

Then, for a given angle θ, we first compute the 2-dimensional

Fourier transform of I ∗ hθ:

Î ∗ hθ(k1, k2) =
∑
u,v

I ∗ hθ(u, v) exp{−i
π

n
(uk1 + vk2)},

with −n ≤ k1, k2 < n. We extract the kth row and apply

Gn,k, which results in the following series of n numbers:

Fα[F1[I ∗ hθ(i, .)](
πk

n
)], −n ≤ i < n,

where (i, .) stands for the ith column and F1 is the 1-dimen-

sional Fourier transform applied on columns. If h is selected

to be within the class of steerable filters, we can rewrite the

previous equation using equation (5):

Fα[F1[
M∑

j=1

φj(θ)I ∗ hθj (i, .)](
πk

n
)], −n ≤ i < n.

Due to the linearity of the operators F1 and Fα, it yields to

M∑
j=1

φj(θ)Fα[F1[I ∗ hθj (i, .)](
πk

n
)]︸ ︷︷ ︸

P[I∗hθ](.,k)

, −n ≤ i < n.

where P[I ∗ hθj ](., k) is the kth row of the Pseudo-polar

Fourier transform computed on I ∗ hθj . This completes the

proof.
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