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ABSTRACT

This paper discusses how to utilize both magnitude and phase in-
formation obtained from the complex directional lter bank (CDFB)
for the purpose of texture image retrieval. The relative phase, which
is the difference of phases between adjacent CDFB coef cients, has
a linear relationship with the angle of dominant orientation within
a subband. This information is incorporated to form a new feature
vector called CDFB-RP. Texture retrieval performance of the pro-
posed CDFB-RP is compared to those of the conventional trans-
forms including the Gabor wavelet, the contourlet transform, the
steerable pyramid and the CDFB. With the same number of features,
the CDFB-RP method outperforms all other transforms in texture
image retrieval, while keeping lower complexity and computational
time.

Index Terms— Directional Filter Bank, Dual-tree, relative phase,
texture classi cation, texture retrieval.

1. INTRODUCTION

The image retrieval problem has recently become more important
and necessary because of the rapid growth of multimedia databases
and digital libraries. Different search engines use different features
to retrieve images. This paper discusses how magnitude and phase
information of the complex directional lter bank (CDFB) [1] coef-
cients can be used to classify texture images.

One of the approaches to texture feature extraction is the lter
bank approach in which texture images are decomposed into sub-
bands using a linear transform or lter bank (FB). In [2], texture
classi cation performances of various FB methods are compared,
and the conclusion is that no method performs well in all kinds
of textures. Several previous works extract texture features based
on wavelet packet signatures [3] and tree-structured wavelet trans-
form [4]. Although these methods allow for a multiresolution de-
composition, they are limited in directional selectivity and may not
be suitable for images with geometric information such as textures.

The 2-D Gabor transform is a directional decomposition that op-
timally achieves joint resolution in space and in spatial frequency.
In [5], the retrieval performance of the Gabor wavelet feature and
other multiresolution features such as wavelet transform and tree-
structured wavelet transform are compared. The comparisons indi-
cate that the Gabor feature yields the best correct texture retrieval
rate. Despite the high performance compared to others, the 2-D Ga-
bor transform produces an over complete representation for images
and is very computationally intensive.

Many other multiresolution multi-directional image represen-
tations like the steerable pyramid [6], contourlet [7] and complex

wavelets [8] have been used to calculate feature vectors. The ba-
sic lters of the steerable pyramid are translations and rotations of
a single function, and a lter at any orientation can be computed as
a linear combination of the basis lters. This property can be used
in rotation invariant texture retrieval [9]. The main advantage of the
complex wavelet decomposition is that it can produce texture fea-
tures which are more robust to translation of the image [8].

Recently, the complex directional lter bank is proposed for tex-
ture image retrieval [1]. The texture image retrieval performance
of the CDFB is close to the 2-D Gabor transform. Although the
CDFB yields both magnitude and phase information in the complex
coef cients, only the magnitude has been used in the classi cation
process. In this paper, we discuss how phase information can be
incorporated explicitely to further improve the classi cation rate.

The paper is organized as follows. In the next section, the CDFB
is brie y reviewed. The linear relationship between the relative phase
of the CDFB and the angle of dominant orientation of texture is dis-
cussed in Section 3. The procedure to retrieve and classify texture
images and the experimental results are presented in Section 4. We
discuss the results and conclude the paper in Section 5.

2. THE COMPLEX DIRECTIONAL FILTER BANK

The (energy) shiftable CDFB is a new image decomposition, which
is recently introduced in [10]. The CDFB, shown in Fig. 1(a), is
an interative multiscale and multidirection FB. Each resolution level
consists of a two-channel FB and a pair of directional lter banks
(DFBs). The purpose of the CDFB is to provide a shiftable and
scalable multiresolution directional decomposition. This transform
has some similarities with the complex version of the shiftable pyra-
mid [6], while maintaining a much lower overcomplete ratio.

According to Fig. 1(a), the input image is rst smoothed by the
lowpass lter L0(z) before passing through the rst level of a mul-
tiresolution FB. This two-channel FB has two lters, highpass R1(z)
and lowpass L1(z). Slices of the frequency responses of these l-
ters at ω2 = 0 are illustrated in Fig. 1(b) and (c). The high frequency
component at the output of lter R1(z) is then decomposed by the
dual DFBs, resulting in the highest resolution directional decomposi-
tion. The low frequency component, after decimation by D2 = 2I ,
is fed into the second level decomposition for the second resolution.
The block P shows one level of the CDFB, where the 2 × 2n dec-
imated outputs of the two DFBs are the real and imaginary parts of
2n complex-valued subbands. For more detail of the construction of
the CDFB, the reader is referred to [10].

The most important property of the CDFB is that all complex
directional subbands are shiftable in the sense that there is no signif-
icant aliasing in the decimated complex subbands. Therefore, each
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Fig. 1. (a) The FB implemented the pyramidal CDFB image rep-
resentation. The block P is reiterated to create multi-level decom-
position. Slices of the 2-D frequency responses of: (b) R0(z) and
L0(z), and (c) R1(z) and L1(z).

complex directional subband provides a shiftable description of im-
age in a speci c scale and direction. Note that this description is
also very parsimonious because the decimation ratio for the subband
is increasing with the number of directions and with the higher scale
(lower resolution). An example of the frequency supports of a three-
level eight-band CDFB is shown in Fig. 2.

By construction of the CDFB, each pair of corresponding di-
rectional lters has the Hilbert transform relation [10]. Therefore,
the equivalent directional complex lter for each subband has one-
sided frequency support, as illustrated in Fig. 2(a). The real part
of the complex lter is symmetric while the imaginary part is anti-
symmetric as in Fig. 2(b). The amplitude and phase information of
a complex coef cient provides local information on the directional
feature of the image at a speci c scale and direction. In our previous
work, only the amplitude information is used to calculate the feature
vector [1]. Thus the objective of the next section is to understand the
relation between the phase information and a typical edge so that it
can be added to the feature vector.
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Fig. 2. The essential frequency supports of (a) the complex lters
in the three-level eight-band CDFB decomposition, and (b) corre-
sponding spatial impulse responses.

3. RELATIVE PHASES OF THE CDFB

Let an N × N image be decomposed by the pyramidal CDFB with
S scales and K orientations per scale, and let ysk(i, j) be the sub-

band complex coef cient at position (i, j) at scale s and orientation
k, where s = 1, 2, ..., S and k = 1, 2, ..., K. Fig. 2(a) shows an
example of the CDFB decomposition when S = 3 and K = 8.
The relative phase (RP) at (i, j) of one subband is de ned as the
difference between the phase of coef cient at that location and that
of the next complex coef cient. Since the rst half of subbands are
‘mostly horizontal’, therefore, the coef cients are re-ordered in the
horizontal direction. The other half of subbands are done in the ver-
tical direction. Speci cally, the RP at the spatial location (i, j) of
one subband is given as

psk(i, j) =

{
� ysk(i, j) − � ysk(i, j + 1) if 1 ≤ k ≤ K

2
,

� ysk(i, j) − � ysk(i + 1, j) if K
2

< k ≤ K,
(1)

where � denotes the phase.
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Fig. 3. Relationship between the angle θk of an edge and the dis-
tances from two horizontally adjacent coef cients located at A and
B to the edge in the direction normal to the subband orientation k
(1 ≤ k ≤ K

4
) at some arbitrary scale.

We make a simplifying assumption that the angle difference be-
tween two consecutive DFB subbands is π

K
. We denote γk as the

center angle of the CDFB subband k. Thus subband k contains direc-
tional information at angles θk = γk + α, where − π

2K
< α < π

2K
.

Let us consider an edge at angle θk in the supported region of
subband k with 1 ≤ k ≤ K

4
. In this case, the center angle of sub-

band γk is an acute angle. Assume that the two horizontally adjacent
coef cients A and B are located in the neighborhood of an edge as
shown in Fig. 3. AA′ and BB′ represent the distances from A and
B to the edge in the direction normal to subband orientation, respec-
tively. The distance between A and B at scale s is Ds = 2s. We
determine the angle of the edge θk by determining α in terms of
AA′ and BB′:

tan α =
MA′

MB′
=

AA′ − HM − AH

MB′
,

=
AA′ − BB′ − Ds sin γk

Ds cos γk
=

AA′ − BB′

Ds cos γk
− tan γk.

If K ≥ 8, |α| ≤ π
16

and α ≈ tan α. Hence, the feature orientation
θk can be approximated by:

θk ≈ γk − tan γk +
AA′ − BB′

Ds cos γk
. (2)

Similarly, the feature orientation θk of the other subbands can be
approximated by:

θk ≈

⎧⎪⎨
⎪⎩

γk − tan γk − AA′−BB′
Ds cos γk

if K
4

< k ≤ K
2

,

γk + cot γk + AA′−BB′
Ds sin γk

if K
2

< k ≤ 3K
4

,

γk + cot γk − AA′−BB′
Ds sin γk

if 3K
4

< k ≤ K.

(3)

Fig. 4(b) and (c) show the magnitude and phase of a CDFB coef-
cient at A (Fig. 4(a)) when the edge (angle θk = 1350) is translated
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Fig. 4. Translation of an edge from A1 to A2 for subband s = 3 and k = 5 when θk = 135◦: (a) edge translation, and coef cient at A for
different positions of the edge: (b) magnitude and (c) phase.

from A1 to A2. The x axis represents the translation distance of the
edge in horizontal direction. When A lies on the edge, x = 0. The
distance from A to the edge is approximately x sin θk . We observe
that when the edge moves from A1 to A2, the corresponding phase
at A (Fig. 4(c) varies linearly with respect to the distance to the edge
in the direction normal to the subband orientation (γk). Hence, the
phase at A can be estimated by:

� ysk(A) = askAA′ + bsk. (4)

The slope ask and the intercept bsk are constants for each scale s
and orientation k. Therefore the term (AA′ − BB′) in (2) and (3)
can be computed from the difference of the phases at A and B:

AA′ − BB′ =
� ysk(A) − � ysk(B)

ask
. (5)

From (2), (3) and (5), we can state that the feature orientation θk of
all CDFB subbands is linearly proportional to the RP (� ysk(A) −
� ysk(B)). Because the RP can represent a dominant direction within
a directional subband, we use it as a feature in the texture image re-
trieval application.

Fig. 5 (a) shows the uniform distribution of CDFB phases of
texture ‘Bark.0000’ in the VisTex collection at the nest scale s = 1
and orientation k = 6. This distribution can not inform us any in-
formation of the edges, while the distribution of RPs has a particular
direction as in Fig. 5(b). The circular mean mc of RPs as de ned in
(6) determines the mean direction of the dominant orientations θk in
subband k, and the circular variance σc in (7) determines the mea-
sure of dispersion for these dominant orientations. Note that the RP
distributions of different images have the different parameters mc

and σc. The RP distribution of texture ‘Metal.0002’ is in Fig. 5(c)
with mc = 2.99 and σc = 0.33. These two parameters are used to
form the RP feature vector in the next section.
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Fig. 5. The phase histogram at scale s = 1 and orientation k = 6
for: (a) the CDFB phases of image ‘Bark.0000’, (b) the RP phases
of image ‘Bark.0000’, (c) the RP phases of image ‘Metal.0002’.

4. CLASSIFICATION METHOD AND EXPERIMENTS

4.1. Experiments

We select two groups of texture images for our experiments. The
texture database used in the rst experiment contains 116 texture im-
ages from the Brodatz album [2], which was used in [5]. The second
group of textures consists of 40 images from the VisTex databases
used in [9]. Each of these 512 × 512 images is divided into sixteen
128 × 128 non-overlapping sub-images, thus creating a database of
1856 texture samples in the rst experiment, and 640 samples in
the second one. Each original image is treated as a single class and
therefore there are 16 samples from each class. To reduce the in-
tensity correlation, all images are normalized to have zero mean and
unit variance.

Each image in the database is applied to the following four de-
compositions: the steerable pyramid, the contourlet transform, the
2-D Gabor transform and the CDFB. The Gabor wavelet is applied
with 4 scales and 6 orientations per scale, while each other transform
has 3 scales of 8 orientations. Their corresponding feature vectors
are computed as in [1]. The RP matrix of each CDFB subband is
created as in (1). The mean of the magnitudes of the CDFB coef -
cients, the circular mean and the circular variance of the RPs which
are computed by:

mc(p) = arctan

∑
i,j sin p(i, j)∑
i,j cos p(i, j)

, and (6)

σc(p) = 1 −

√(∑
i,j sin p(i, j)

)2

+
(∑

i,j cos p(i, j)
)2

L
.(7)

are used to form the CDFB-RP feature vector, where p is the PR ma-
trix and L is the number of elements. In order to obtain a feature
vector which has the same number of features as the Gabor or other
feature vectors, the CDFB-RP feature vector is formed by 24 means
of the magnitudes of the CDFB coef cients (24 subbands), 16 cir-
cular means of RPs (16 nest subbands) and 8 circular variances of
RPs (8 nest subbands):

fyp = [m1(y), . . . , m24(y),mc
1(p), . . . , mc

16(p), σc
1(p), . . . , σc

8(p)].

The query pattern can be any one of the texture patterns from the
image databases. Let fxq and fyp be two CDFB-RP feature vectors.
The distance between them is de ned by

d(fxq, fyp) =
24∑

k=1

∣∣∣∣mk(x) − mk(y)

α(mk)

∣∣∣∣ +
16∑

k=1

∣∣∣∣m
c
k(q) − mc

k(p)

α(mc
k)

∣∣∣∣

+

8∑
k=1

∣∣∣∣σ
c
k(q) − σc

k(p)

α(σc
k)

∣∣∣∣ , (8)
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Table 1. Comparison of ve different feature extraction schemes in
texture image retrieval

Gabor Contour Steer CDFB CDFB-RP
Feature Length 48 48 48 48 48
Redundant Ratio 24 4/3 32/3 8/3 8/3
Feature Time (s) 0.274 0.025 0.048 0.036 0.047

116 Brodatz
N = 15 74.01 69.37 71.23 72.60 75.23
N = 40 83.78 81.21 82.54 83.10 86.46
N = 80 88.17 86.79 87.96 87.90 90.84
40 VisTex
N = 15 80.81 75.45 74.65 79.29 82.26
N = 40 91.09 88.46 87.94 90.40 92.07
N = 65 93.89 92.32 91.47 93.32 94.69

where α(mk), α(mc
k) and α(σc

k) are the standard deviations of
mk(·), mc

k(·) and σc
k(·) of the entire database. The distances of

the Gabor feature vectors and the other vectors are described in [1].
For each query image, N nearest neighbors are selected, and the

number of these textures belonging to the same class as the query
texture, except for itself, is counted. This number (less than or equal
to 15) divided by 15 is de ned as the retrieval rate. The performance
of the entire class is obtained by averaging this rate over the 16 mem-
bers which belong to the same class of texture. The average of all
classes is the overall performance of the transform.

4.2. Texture Retrieval Results

The second part of Table 1 summarizes overall retrieval rates us-
ing different directional transforms for the rst experiment. If only
the top 15 texture images that are nearest to the search texture are
considered, the CDFB-RP gives the best overall retrieval perfor-
mance of 75.23 %. The CDFB and the Gabor wavelet are at 72.6 %
and 74.01 %, while the contourlet and the steerable pyramid are
at 69.37 % and 71.23 %. Fig. 6 shows the overall performances
for the case of N from 20 to 100. It is clear that the CDFB-RP is
consistently better than the Gabor, the contourlet and the steerable
pyramid.

In the second experiment with 40 VisTex textures, the retrieval
rates for the ve directional decompositions are in the third part of
Table 1. We observe that with N = 15, the overall retrieval per-
formance of the CDFB-RP is highest at 82.26%. The performance
of the CDFB (79.29%) is very close to that of the Gabor wavelet

(80.81%), while they are signi cantly higher than those of the con-
tourlet and steerable pyramid (75.45% and 74.65%, respectively).

In order to evaluate the ef ciency of overcomplete representa-
tion in estimating the feature vector of the texture, we compare the
CPU time to calculate the feature vectors ( rst part of Table 1). The
computation is done in MATLAB. As we can see, the Gabor features
take the longest time to compute (0.274 s), but it can be reduced if
we decimate the lowpass subband of the Gabor lters. The CDFB-
RP features (0.047 s) take much less time which is approximately
equal to the steerable pyramid features (0.048 s), but more time than
the contourlet features (0.025 s) and the CDFB features (0.036 s).

5. CONCLUSION

A new image feature, which we called CDFB-RP, is proposed for
feature extraction. The feature is calculated based on the CDFB de-
composition, which has several attractive properties such as multi-
scale, multi-directional and shiftablity. By combining of the magni-
tude and phase information of the CDFB coef cients, the CDFB-RP
feature is used in texture image retrieval. Compared to other direc-
tional transforms including the 2-D Gabor wavelet, the contourlet,
the steerable pyramid and the CDFB, the CDFB-RP yields best over-
all performance in classi cation rate, while keeping the complexity
relatively low. Fast decomposition structure and low redundancy
make CDFB-RP more ef cient in searching and browsing texture
images.
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