
FAST INTERFRAME TRANSCODING FROM H.264 TO MPEG-2

Sandro Moiron1, Sérgio Faria1,2, Pedro Assunção1,2, Vitor Silva1,3, António Navarro1,4

1Instituto de Telecomunicações, Portugal; 2Instituto Politécnico de Leiria,ESTG, Portugal;
3Universidade de Coimbra, DEEC, Portugal; 4Universidade de Aveiro, DET, Portugal.

{sandro.moiron, sergio.faria, amado, vitor}@co.it.pt, navarro@av.it.pt

ABSTRACT
This paper deals with conversion from H.264/AVC (Ad-

vanced Video Coding) coded video into the MPEG-2 format.
The proposed approach exploits similarities between the cod-
ing techniques used in both standards in order to achieve a
computationally efficient method for transcoding interframe
coded slices. The conversion process is based on adaptation
of both coding mode and motion information embedded in
the H.264/AVC video stream, such that subsequent MPEG-2
encoding takes full advantage of the higher computational ef-
fort spent on the first encoding step. The proposed transcod-
ing scheme significantly reduces the computational complex-
ity needed for MPEG-2 interframe coding by reusing relevant
information from the H.264 bitstream. The simulation results
show that computational complexity savings up to 60%, with
a marginal objective quality cost, can be achieved in compar-
ison with a cascaded decoder-encoder.
Index Terms— H.264/AVC, MPEG-2, transcoding.

1. INTRODUCTION

The current H.264/AVC standard [1] presents a much bet-
ter compression performance than its counterparts standards,
namely MPEG-2 [2]. However, the MPEG-2 [3] video stan-
dard is still the most common video compression format and
its widespread use in both professional and user equipment
is expected to last for several years ahead, namely in Digital
television (DTV), personal video recorders (PVR) and digital
versatile disk (DVD).
Due to its higher compression efficiency, H.264 is increas-

ingly gaining acceptance in multimedia applications and ser-
vices such as High Definition Digital Television (HDTV), Mo-
bile TV (MTV) and the internet. The simultaneous use of di-
verse coding standards definitely brings interoperability prob-
lems because the same type of source material may be avail-
able in a format not compatible with the target equipment.
Even for some legacy terminal equipment with software up-
grade capability, the computational resources needed to en-
code/decode H.264 might be too high. Furthermore it is not
likely that technology migration in both professional and user
equipment happens in such a short period of time that prob-
lems arising from co-existence of both standards can be ig-
nored. Therefore, transcoding from H.264 to MPEG-2 for-
mat is necessary to maintain backward compatibility and ease
technology migration.

In the recent past, much research effort has been put to
develop efficient transcoding from MPEG-2 into H.264 in or-
der to migrate legacy video content to the new format [4],[5],
[6]. In contrast, too little effort has been devoted to the prob-
lem of backward compatibility. To the authors knowledge
this problem was only recently addressed in [7] and [8]. In
the former, some technical problems and research issues are
highlighted whereas in the latter the authors only deal with
P slices. This paper deals with interframe transcoding for
both P and B slices and the proposed coding mode conversion
methods are based on minimum residual sub-block informa-
tion while in [8] only motion vector conversion is addressed.
A trivial implementation of a transcoder is a cascade of

a H.264 decoder and an MPEG-2 encoder. However such a
scheme completely ignores the H.264 encoding information
embedded in the bitstream, which is the result of smart rate-
distortion decisions aiming at encoding each block with the
highest possible efficiency. By using such a transcoder the
H.264 decoded frames have to be fully MPEG-2 encoded as
if no previous coding information existed. In order to re-
duce this unnecessary complexity, the proposed transcoder
aims at simplifying the MPEG-2 encoding process by reusing
the information contained in the H.264 bitstream. This paper
proposes a conversion method for interframe coding modes
which is shown to achieve a significant reduction in computa-
tional complexity with marginal objective quality reduction,
when compared with full recoding.
The paper is organised as follows. Section II describes the

proposed coding mode conversion method along with a dis-
cussion about possible coding constraints and their influence
on transcoding performance. Section III presents a detailed
analysis of the simulation results. Finally section IV draws
the main conclusions and point out some issues for further
performance improvement.

2. INTERFRAME TRANSCODING

Although the same block-based coding concept is used in
both H.264 and MPEG-2 standards, there are significant dif-
ferences between them which leads to a complex matching
process of macroblock (MB) modes. This section presents
the proposed coding mode conversion techniques for the MB
types defined in H.264 P and B slices, in particular SKIP, pro-
gressive 16×16 as well as those modes used in sub partitioned
blocks.

IV - 691-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

2.1. 16×16 SKIP
Conversion of H.264 skipped MBs into MPEG-2 compatible
ones is not a straightforward process because skipped MB
have quite different characteristics in the two standards.
In the case of H.264 P slices, skipped MBs correspond to

image regions with either no motion (i.e., static) or uniform
motion (assuming translational motion) whereas in MPEG-2
only static areas can be encoded as skipped MBs. In both
cases no residual information is encoded and the reference
frame is always the last one used for such purpose. Since
MPEG-2 SKIP MB type only covers a subset of the corre-
sponding H.264 SKIP MB type (i.e. those with no motion),
the remaining non-matching modes are converted to either
forward or backward predicted. The motion information for
theseMBs is obtained from previously encoded ones by main-
taining the same motion vectors (�MV=0) and then encoding
them such as described in the next subsection 2.2.
In the case of B slices, the mode conversion between

H.264 and MPEG-2 is different from that used in P slices.
The MPEG-2 SKIP MB type in B slices is similar to that of
H.264 since both allow the same motion type which simpli-
fies the mode conversion function. However, for both P and
B slices MPEG-2 does not allow skipped MBs neither in the
first nor in the last MB of a slice. This is particularly relevant
in low resolution frames because each MPEG-2 slice must
start and end in the same MB row which results in a larger
proportion of MBs that cannot be encoded as skipped.

2.2. 16×16 predicted
There are two types of H.264 16×16 MB which can be easily
converted into 16x16 predicted MPEG-2 MBs. These are the
H.264 16×16 predicted MBs and those H.264 skipped MBs
which do not match the MPEG-2 SKIP mode constraints. De-
spite some similarities between the two standards, the set of
H.264 coding tools used in 16x16 prediction modes do not
match those used in MPEG-2 counterpart MBs type, as de-
scribed in the following.
While in MPEG-2 either one or two of the last reference

frames are used for predicting the current one, in H.264 up to
16 reference slices can be used for the same purpose. There-
fore, in H.264 only those MBs that are predicted from the last
two reference frames can be easily converted to MPEG-2 if
these references correspond to possible MPEG-2 references.
If H.264 motion vectors point to a reference frame which

is not in the same temporal position as the current MPEG-2
reference frames then motion vector rescaling must be per-
formed before MPEG-2 encoding. Figure 1 shows the mo-
tion vector conversion process by scaling the original H.264
motion vectors, such that either the last one or two reference
frames are used as required by MPEG-2. Assuming that mo-
tion between H.264 reference pictures and MPEG-2 ones is
uniform, the scaling factor can be obtained by using the tem-
poral distance between them. If both H.264 and MPEG-2 ref-
erence frames coincide in the same temporal position then
the scaling factor is unitary and the motion vector remains
unchanged.

Fig. 1. Motion vector scaling for B and P macroblocks.

If the H.264 coding option defined as ”Unrestricted Mo-
tion Vectors” is used, then temporal prediction from outside
frame boundaries is allowed. In contrast to MPEG-2 where
prediction is only permitted from inside frame boundaries.
Prediction from outside frame boundaries is particularly use-
ful in sequences where camera panning occurs because refer-
ence boundary MBs move towards outside the frame limits.
In order to convert MBs using such a coding mode the corre-
sponding H.264 motion vectors are truncated and constrained
to point inside the reference frame.
H.264 prediction may use motion vectors with an accu-

racy of quarter pixel while in MPEG-2 the maximum mo-
tion accuracy is half pixel. Therefore, motion vector con-
version also implies accuracy conversion if quarter pixel is
used in H.264. Since computation of MPEG-2 motion vec-
tors may involve both scaling and pixel accuracy conversion,
it is essential to use rounding instead of truncation in order to
achieve an efficient prediction.

2.3. MB Sub-partitions

The MB sub-partition scheme used in H.264 is a major source
of complexity in transcoding for MPEG-2. This feature im-
proves the prediction performance by splitting the 16×16MB
into 3 possible partition sizes: (16×8, 8×16 and 8×8). Each
one of these can use a different reference image. The 8×8 par-
tition can be further split into 3 more sub-partition types, such
as (8×4, 4×8 and 4×4). This allows to find better predictions
for the set of pixels belonging to each sub-partition. Sub-
partitions introduce significant complexity in the MB conver-
sion process, because the number of sub-blocks with different
sizes and multiple reference frames combinations greatly in-
crease. This is even more complex in B slices because it is
possible to use several prediction modes from different ref-
erence frames (e.g., different partitions of the same MB may
use forward, backward or bidirectional prediction). This leads
to a greater mismatch between H.264 and MPEG-2, because
the number of prediction possibilities in MPEG-2 in much
smaller.
The full method used for MB conversion and motion vec-

tor calculation is based on the H.264 coded information in-
cluded in the video stream. The MPEG-2 motion vector is
obtained after computing the sum of squared differences of
the whole MB using each sub-partition motion vector. The
selected motion vector is the one which produces the mini-
mum sum of squared differences.

IV - 70

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100

Ti
m

e
(m

se
c)

Image

Mobile Sequence

Full Recoding−924ms
P16x16−678ms

Psub8x8−397ms

Fig. 2. Computational complexity results for P slices

3. EXPERIMENTAL RESULTS

Three distinct test sequences with 250 frames and resolution
720×576@25 Hz were used for simulation and performance
evaluation (Mobile, Stockholm and Shields). They are char-
acterised by different motion activity and different spatial de-
tail. The GOP size was 12 and its structure ’IBPBPBP’. Five
reference frames were used and the bitrate was 5Mbps for
both the H.264 and MPEG-2 streams. The transcoded se-
quence keeps the same GOP structure using the Main Pro-
file. The transcoders are based on the H.264/AVC JM10.2
decoder and the MPEG-2 v1.2 encoder. A linux system run-
ning on a 3GHz processor and 1.5GB of RAM memory was
used in the simulations. The experiments were intended to
evaluate the performance of the proposed transcoding scheme
by comparing the computational complexity and the objective
video quality with the reference cascaded transcoder (i.e., full
H.264 to MPEG-2 recoding). The results are analysed for P
and B slices and do not include transcoding of intra slices.
The intra mode was partially addressed by the authors in [9].
Figure 2, shows the computational complexity gain for P

slices of the Mobile sequence measured in processing time.
The three lines (Full Recoding, P16×16 and Psub8x8) corre-
spond to the full cascaded recoding, fast transcoding of 16×16
MBs and fast transcoding of all MB prediction modes, re-
spectively. Each graphic label contains the respective average
frame computation time. As it can be seen, fast transcoding
of 16×16 MBs, (P16×16) achieves near 27% of processing
time reduction when compared with full recoding. This gain
is obtained with a marginal loss of 0.12 dB in objective qual-
ity, as shown in Figure 3. When fast transcoding is applied to
all MB modes of the P slices, the time reduction rises up to
57% with an objective quality loss of 0.26 dB.
As referred to in section 2.3, transcoding of B slices is

much more complex than P slices. Therefore considerably
different results are expected in this case. Figure 4 shows
the computational complexity gain obtained in the case of B
slices. As it can be seen in the figure, the complexity reduc-
tion achieved by the B slice is substantially different. In the

 32

 33

 34

 35

 36

 37

 38

 39

 0 20 40 60 80 100

P
S

N
R

 (d
B

)

Image

Mobile Sequence

Full Recoding−36.42dB
P16x16−36.30dB

Psub8x8−36.16dB

Fig. 3. Transcoded image quality for P slices

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120

Ti
m

e
(m

se
c)

Image

Mobile Sequence

Full Recoding−717ms
B16x16−527ms

Bsub8x8−293ms

Fig. 4. Computational complexity results for B slices

case of 16×16 MB fast transcoding achieves a complexity re-
duction of 26%, with an objective quality loss around 0.22
dB, as illustrated in Figure 5.
Fast transcoding of all MBs gives a complexity gain of

about 60%, with a quality loss of 0.33 dB. The quality loss is
slightly larger in this case than in P slices. However since B
slices are not used as references in MPEG-2, the error does
not propagate through the sequence. Note that only B slices
were taken into account in this case and the average quality
loss for the whole sequence is lower, as shown in Table 1.
In Figure 6 the global computational complexity reduc-

tion achieved by the proposed fast transcoding in both B and
P slices is shown. The reduction of computational complex-
ity is 58% on average, for the Mobile sequence with 0.29 dB
of quality loss. As it can be seen in Table 1, a better per-
formance is obtained for sequences Stockholm and Shields,
where larger complexity gains are achieved with smaller qual-
ity losses. This increase in the performance is mainly due to
the fact that the coding complexity of these two sequences
is lower. The objective quality loss obtained with the pro-
posed fast transcoding scheme in comparison with full recod-

IV - 71

 32

 33

 34

 35

 36

 37

 38

 39

 0 20 40 60 80 100 120

P
S

N
R

 (d
B

)

Image

Mobile Sequence

Full Recoding−35.56dB
B16x16−35.34dB

Bsub8x8−35.23dB

Fig. 5. Transcoded image quality for B slices

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200

Ti
m

e
(m

se
c)

Image

Mobile Sequence

Full Recoding−811ms
Fast Transcoding−341ms

Fig. 6. Computational complexity comparison for P/B slices

ing is expected to be improved by the on-going work in mo-
tion vector refinement combined with R-D optimisation par-
tially based on information from H.264 optimised streams.

4. CONCLUSIONS

The transcoding method described in this paper is focused on
the computational complexity reduction of a video transcoder
between H.264 and MPEG-2 standards. Particularly, inter-
frame coding similarities are exploited between both stan-
dards, in order to re-encode the various MBs modes by adapt-
ing relevant information embedded in the H.264 bitstream.
The simulation results show a computational complexity re-
duction up to 60%, with small quality loss, when comparing
with the full recoding scheme.
In order to achieve a better performance for the proposed

transcoding method, future work will further exploit H.264
embedded coding information. This will be focussed on the
sub-partition block information and motion vector refinement
in a small search window.

Table 1. Transcoder results for various sequences.
PSNR Diff Complexity Gain
(dB) (dB) (ms) (%)

Mobile 35.96 -0.29 811 58
Stockholm 35.94 -0.30 755 60
Shields 34.20 -0.24 792 62

5. ACKNOWLEDGEMENT

This work was sponsored by IT/LA H2M project from
Instituto de Telecomunicações.

6. REFERENCES

[1] Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T
VCEG, Draft ITU-T Recommendation and Final Draft
International Standard of Joint Video Specification (ITU-
T Rec. H.264 / ISO/IEC 14 496-10 AVC), March 2003.

[2] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Nar-
roschke, F. Pereira, T. Stockhammer, and T.Wedi, “Video
coding with h.264/avc: Tools, performance, and com-
plexity,” IEEE Circuits and Systems Magazine, pp. 7–28,
1st Quarter 2004.

[3] ITU-T, Recommendation H.262, Information Technology
- Generic Coding of Moving Pictures and Associated Au-
dio Information: Video, Feb. 2000.

[4] J. Xin, A. Vetro, S. Sekiguchi, and K. Sugimoto,
“MPEG-2 to H.264/AVC transcoding for efficient storage
of broadcast video bitstreams,” in Proc. of the Interna-
tional Conference on Consumer Electronics, Jan. 2006,
pp. 417–418.

[5] L. Yang, X. Song, C. Hou, and J. Dai, “A scheme for
MPEG-2 to H.264 transcoding,” in Proc. of the Cana-
dian Conference on Electrical and Computer Engineer-
ing, May 2006, pp. 310–313.

[6] T. Qian, J. Sun, D. Li, X. Yang, and J. Wang, “Transform
domain transcoding from mpeg-2 to h.264 with interpo-
lation drift-error compensation,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 16, no.
4, pp. 523–534, April 2006.

[7] Hari Kalva, “Issues in H.264/MPEG-2 video transcod-
ing,” Computer Science and Engineering, 2004.

[8] L. Yang, X. Song, C. Hou, and J. Dai, “H.264 MPEG-2
transcoding based on personal video recorder platform,”
in Proc. of the Ninth International Symposium on Con-
sumer Electronics, June 2005, pp. 438–440.

[9] Ricardo Marques, Sérgio Faria, Pedro Assuncao, Vi-
tor Silva, and António Navarro, “Fast conversion of
H.264/AVC integer transform coefficients into dct coef-
ficients,” SIGMAP, pp. 5–8, Aug. 2006.

IV - 72

