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ABSTRACT 

The problem of dimensionality reduction for color 
representation of hyperspectral images has received recent 
attention. In this paper, several independent component 
analysis (ICA) based approaches are proposed to reduce the 
dimensionality of hyperspectral images for visualization. We 
also develop a simple but effective method, based on 
correlation coefficient and mutual information (CCMI), to 
select the suitable independent components for RGB color 
representation. Experimental results are presented to 
illustrate the performance of our approaches.  

Index Terms— Hyperspectral imaging, ICA, visualization, 
dimensionality reduction

1. INTRODUCTION 

There has been a growing interest in the acquisition of 
hyperspectral remotely sensed imagery. Hyperspectral 
imagery is available in hundreds of bands rather than a few 
bands as in multispectral imagery. Consequently, it is 
desirable to develop computational techniques to be able to 
process the high-dimensional data in a computationally 
efficient manner that yields accurate results. There has been 
a great deal of research on dimensionality reduction of 
hyperspectral data for image analysis tasks such as 
classification and change detection [1-3]. In this paper, we 
consider the problem of dimensionality reduction of 
hyperspectral images for color display. This is an important 
problem as this will enable humans to make decisions based 
on image data. Naturally, the goal is to represent the high-
dimensional dataset in three dimensions with as little loss of 
information as possible, and should be easy for the humans 
to understand and visualize.  

There has been some recent work on this problem [4-7, 
11]. A partitioned principal component transformation 
(PCT) method was proposed in [4] to reduce the number of 
bands for displaying the hyperspectral remote-sensing 
images.  Tsagaris, et al. also used the idea of segmented 
PCT method where they employed three different methods 
for segmentation of bands and compared their performance 
for color representation [5]. The principal-components-

based display strategy is also used in [6] for spectral imagery 
in the HSV color space. Jacobson and Gupta discussed the 
design goals for such systems and provided a display method 
using fixed linear spectral weighting envelopes in [7].  

It is well known that PCT based methods for 
signal/image processing work well if the signals can be 
modeled accurately in terms of their second-order statistics. 
However, it has been observed that accurate models for 
hyperspectral datasets require higher-order statistics and 
dimensionality reduction methods based on independent 
component analysis (ICA) have been proposed [1,2]. The 
goal of these ICA based methods is to mostly improve 
classification. In this paper, we develop ICA based methods 
for dimensionality reduction suitable for the color display 
application. It is anticipated that the ICA based approach 
will result in a much better color display as it is based on a 
more accurate model that takes into account higher-order 
statistics. Three different segmentation approaches are used 
to partition the hyperspectral bands prior to applying ICA. 
All three segmentation approaches are based on the 
characteristics of hyperspectral images. Their performances 
are illustrated by means of an example.  

2. ICA BASED DIMENSIONALITY REDUCTION 

2.1. Independent component analysis 

Independent component analysis was originally developed to 
separate individual signals from linear mixtures of the 
signals. These mixture signals can be simply written as,  

      x As=                                                                 (1) 
where x is the random vector of the mixture signals, s is the 
vector of original signals, and A is the mixing matrix. Setting 
up the statistical model to find out the original signals is 
called independent component analysis, or ICA [8]. 
The general idea behind ICA is to try to estimate the inverse 
matrix of A, 1W A−= , and reconstruct s by s W Χ= , while 
having a high fidelity of the original vector s. In order to 
accomplish this goal, several algorithms have been 
developed according to different statistical criteria. These 
criteria include kurtosis and negentropy. Detailed discussion 
on ICA can be found in [8, 9]. Due to its computational 
advantage, the experiments in this paper are all based on 
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FastICA. The MatlabTM implementation of the algorithm 
used is available in [10]. 

2.2. Selection of ICA components 

Unlike principal component analysis, the order of the 
independent components after each application of ICA is 
generally not the same. To the best of our knowledge, there 
are no specific methods to determine the rank or ordering of 
the components. It is done in an ad hoc manner and is 
application specific. In essence, here we want to reduce the 
dimensionality and choose the components which may 
contribute the best quality to our application namely the 
final display. In this paper, we choose those components 
which provide the most information with respect to the 
original data set. We employ a measure based on both 
correlation coefficient and mutual information to find the 
independent components which have strong relationships 
with the original bands.  

Specifically, assume that the hyperspectral image 
dataset is an M*N*L matrix H, where L is the number of 
spectral bands. The FastICA algorithm is applied to H, and 
the resulting output Matrix A consisting of the independent 
components is also an M*N*L matrix. The three RGB 
components need to be selected from these L independent 
components. The correlation between the ith band image in 
H and the jth independent component in A can be written as:  
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with iH  and jA  indicate the means of the ith and jth images 
in H and A, respectively. We will disregard the sign of Cij
and will employ its absolute value.  

The mutual information is a measure of statistical 
dependency between two images. The frequency of 
occurrence of a pixel intensity value corresponds to the 
probability of that value, )( xp
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where 
iHH and

jAH are entropies of Hi and Aj, respectively. 

i jH AH  is the joint entropy of Hi and Aj.

2.3 Dimensionality reduction approach 

We first apply ICA to the given hyperspectral dataset. Once 
the independent components have been obtained, we need to 
select three components for display purposes. In our work 

reported here, the components which have the most 
information of the original hyperspectral images are 
selected. The proposed idea is realized by using both the 
correlation coefficient (CC) and the mutual information (MI) 
criteria for selection. We call this approach ICA-CCMI. The 
main idea of ICA-CCMI is summarized in the following 
steps. 
1) Apply FastICA to the original dataset to obtain A. 
2) Use Equation (2) to calculate the correlation coefficient 
between every pair of independent components and 
hyperspectral bands. The average correlation of the jth

component in A with hyperspectral image H is defined as:  

/j i j
i

C C L=
                                                   (4) 

The larger the average correlation coefficient value of an 
independent component, the closer the relationship of this 
component with the original hyperspectral image dataset. 
3) Similar to step 2), compute the average mutual 
information for the jth components of A as: 

/
j i jA H A

i

I I L=                                                              (5) 

Again larger the value of 
jAI , more the information 

regarding the original dataset the jth component has.  
4) Find the maximum value of jC , called 

jCmax . Normalize 

each jC  using 
jCmax  as: 

        / max
N

j j jC C C=                                                       (6) 

5) Normalize each 
jAI  using 

jAImax  as: 

         / max
j j j

N

A A AI I I=                                                   (7) 

6) Find the product1 of 
N

jC  and 
j

N

AI , and then the 

selection criterion for independent components is: 
           

j

N N

j j ACCM I C I= ×                                           (8) 

Component(s) with the largest value(s) of CCMIj are to be 
selected for display. 

The whole procedure is implemented in Matlab on a 
computer with CPU 3.0 GHz, RAM 1G, and Windows XP. 
It takes around 55 seconds for a 512*512*21 dataset, and 
about 380 seconds for a 512*512*63 dataset.  
   

3. SEGMENTATION APPROACHES 

One may employ ICA-CCMI to the entire hyperspectral 
dataset and select the three bands with largest values of 
CCMIj for display purposes. However, there are two obvious 
drawbacks when ICA-CCMI is applied to the entire dataset. 
One is the huge computational burden, and the other is that 

                                                
1 In this paper, we employ the product to combine the two 
individual selection criteria. Other combination methods are 
also possible and are currently being investigated.  
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the use of all the bands may not reveal the information in 
certain bands. To alleviate this situation we consider 
segmentation or partitioning of the bands prior to the 
application of ICA. We describe partitioning approaches 
based on a specific dataset. The 126 bands (435-2489 nm) 
hyperspectral data used in this paper were acquired from 
HYMAP. They are divided into three subgroups by different 
partitioning approaches according to specific criteria. 
Segmented ICA based on equal subgroups: 
This segmentation method is simple and direct. It divides the 
total number of bands into three equal size subgroups. In our 
experiment, the first subgroup covers the region from band 
1st to band 42nd (435 - 1047nm); the second subgroup is 
from band 43rd to band 84th (1062 - 1684 nm); and the third 
subgroup contains the remaining 42 bands (1697-2489 nm). 
Theoretically, the equal subgroup partitioning approach can 
significantly reduce the computational load, but there is no 
special information included in each subgroup for further 
image analysis. After the application of ICA-CCMI to each 
subgroup, the most suitable component from each subgroup 
is selected to construct the final RGB image. 
Segmented ICA based on correlation coefficient: 
The significant degree of correlation between bands results 
in a high degree of spectral redundancy [5]. Figure 1 shows 
the correlation coefficients between every pair of spectral 
bands for the dataset, where the white points represent high 
degree of correlation and dark points represent less 
correlation between two bands. According to the correlation 
values in this figure, the 126 bands can be separated into 
three subgroups where bands in each subgroup exhibit high 
correlation amongst each other. The first subgroup is from 
band 1st to band 21st (435 - 740 nm), the second subgroup 
covers the region from band 22nd to band 63rd (740 - 1405 
nm), and the third subgroup is from band 64th to band 126th

(1420 - 2489 nm). These three subgroups can be handled as 
described earlier.  

Figure 1. Correlation coefficient matrix of bands 
Segmented ICA based on RGB spectrum: 
According to the human visual system and the region of the 
electromagnetic spectrum, three subgroups can be selected 
from the 126 bands to represent the blue, green and red 
regions of the visible part of the electromagnetic spectrum 
[7]. The first subgroup is from band 1st to band 5th (435-495 
nm), the second subgroup covers the regions from band 6th

to band 12th (511-603 nm) and the third subgroup is from 
band 13th to band 19th (619-710 nm). These three subgroups 

represent the regions of blue, green and red, respectively. In 
particular, instead of using all of the bands, this partitioning 
method just deals with the bands in the spectrum regions of 
blue, green and red, and ICA-CCMI based methodology is 
applied to these subgroups. 

4. EXPERIMENTAL RESULTS 

The partitioning approaches discussed above describe three 
ways in which one could divide the hyperspectral bands. In 
this section, the RGB visualization results are presented in 
Figures 2 - 4 to compare different segmented ICA 
approaches. As discussed above, we select one of the 
independent components from each subgroup to display the 
final RGB image. But there is no specific criterion to decide 
which of the three independent components will be mapped 
to the R component, the G component, or the B component, 
except for the segmented ICA approach based on RGB 
spectrum. So any set of selected independent components 
can be mapped to R, G, or B colors. Here we show results 
for one arbitrary mapping between independent components 
and R, G, and B colors.  

Figure 2(a) shows the RGB display of segmented ICA 
based on equal subgroups. In our experiment, even though 
different combinations of the selected independent 
components have different RGB visualization results, the 
performance in terms of the structures and edges is relatively 
unaffected by different combinations. Figure 2(b) illustrates 
the RGB display of segmented ICA based on correlation 
coefficient.  

   
                     (a)                                            (b) 

Figure 2. Display results of segmented ICA 
 (a) equal subgroups and (b) correlation coefficient 

Figure 3 shows the results of segmented ICA and PCA 
based on RGB spectrum, where the B component is from the 
first subgroup, the G component is from the second 
subgroup, and the R component is from the third subgroup. 
As opposed to using ICA-CCMI algorithm in the selection 
of components, PCA representation is formed by the first 
principal components of each subgroup. The true color 
representation from the information provided in the 
HYMAP dataset is shown in Figure 4. Based on Figures 3 
and 4, the performance of ICA is much closer to the true 
color image than that of PCA with RGB spectrum 
partitioning method when they are displayed in color. 
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                      (a)                                            (b) 
Figure 3. Display results of segmented ICA based on RGB 

spectrum, (a) ICA, (b) PCA 

Figure 4. The true color image of the hyperspectral dataset 
Entropy can be used to represent the information 

content of each component and, therefore, the quality of 
representation [5]. The entropies of each selected 
component of ICA and PCA visualization are calculated and 
compared in TABLE I. The RGB components of PCA 
visualization are the first principal components of each 
subgroup, which have most of the energy of that subgroup. 
Obviously, the segmented ICA based on correlation 
coefficient has larger entropy values than the segmented 
PCA method. 

TABLE I ENTROPY FOR DIFFERENT 
PARTITIONING APPROACHES 

Entropy Subgroup 1 Subgroup 2 Subgroup 3 
Partitioning 
approaches ICA PCA ICA PCA ICA PCA 

Equal 
Subgroup 6.840 6.528 7.011 7.163 6.792 6.728 

Correlation 
coefficient 7.472 6.440 7.506 6.541 7.14 6.41 

5. CONCLUSIONS

In this paper, an effective dimensionality reduction method 
for color displays, ICA-CCMI, is proposed for hyperspectral 
images. Our method is based on segmentation of the 
hyperspectral data bands and the application of ICA on each 
segment. Three partitioning approaches are used in our 
experiment, based on equal subgroups, correlation 
coefficients and RGB electromagnetic spectrum, 
respectively. Correlation coefficient and mutual information 
are used to select the independent component from each 
segment for color display. The most salient feature of the 

ICA-CCMI is that it does not require training data, or 
determination of any parameters for the independent 
components and the hyperspectral images. ICA-CCMI is 
applied to a real hyperspectral dataset, and the display 
results show that the ICA-CCMI algorithm is a practical and 
attractive method for dimensionality reduction.  

There are a number of issues that are worth considering 
in future work. For example, additional statistical and 
quantitative evaluation metrics are necessary to thoroughly 
evaluate the display results, and extensive experimentation 
with other datasets is desirable. 
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