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ABSTRACT
We present a method for fast anomaly detection in 
hyperspectral imagery (HSI) based on the Support Vector 
Data Description (SVDD) algorithm.  The SVDD is a single 
class, non-parametric approach for modeling the support of 
a distribution. A global SVDD anomaly detector is 
developed that utilizes the SVDD to model the distribution 
of the spectra of pixels randomly selected from the entire 
image. Experiments on Wide Area Airborne Mine Detection 
(WAAMD) hyperspectral data show improved Receiver 
Operating Characteristic (ROC) detection performance 
when compared to the local SVDD detector and other 
standard anomaly detectors (including RX and GMRF). 
Furthermore, one-second processing time using desktop 
computers on several 256 256 145 datacubes is achieved. 

Index Terms— Hyperspectral Imaging, Anomaly 
Detection, Real-Time Hyperspectral Processing.

1. INTRODUCTION
Detecting anomalies in hyperspectral imagery entails the 
task of locating pixels with spectral signatures that deviate 
significantly from the background. While they can process 
images completely in-scene, anomaly detectors usually 
suffer from a high false-alarm rate due to simplifying 
assumptions imposed on the background signature 
distribution [1][2].

Most anomaly detectors use a two-step approach: 1) they 
characterize the background by estimating a model for the 
background spectra, and 2) they detect anomalies as pixels 
that deviate from the background model. There are two 
broad approaches to determining this support region: 
parametric or non-parametric.[1][2][4][5][6].

Parametric approaches require the selection, validation, and 
estimation of the probability density function (PDF) of the 
background spectra [9][10].  Several examples are based on 
the well-known Reed-Xiaoli (RX) detector [3], which 
assumes that the spectra are Gaussian distributed. However, 
it has been shown that the Gaussian and other unimodal 
distributions are not a good fit to the data and often lead to 
many false alarms.  Furthermore, estimating a PDF for high 
dimensional HSI data is difficult, since the need for samples 
increases exponentially with the number of bands [12].

In this work, we use the SVDD, a support vector approach, 
to model the support region of the background distribution 
[1][7][8].  The SVDD is a non-parametric method that has 
several benefits, including: Non-Gaussian modeling: it can 
model arbitrarily-shaped and multi-modal distributions; 
Sparsity: fewer training samples are needed to characterize 
the background in high-dimensional spaces; Good 
Generalization: the method avoids overfitting and yields 
good generalization results [1].  Furthermore, we derive a 
global SVDD anomaly detector that can rapidly analyze the 
data cube. 

The paper is organized as follows.  After deriving the 
SVDD algorithm, we present a global version of the SVDD 
anomaly detector in Section 3.  Section 4 discusses the 
computation issues regarding the detectors, and the 
experimental results are provided in Section 5.  Finally, 
Section 6 concludes the paper. 

2. DERIVING THE SVDD 
The linear SVDD attempts to find a hypersphere that best 
describes the region of the feature space in which a set of 
data points lie [7][8].  For HSI, consider the spectra from a 
set of pixels in a hyperspectral image, denoted as 

{ , 1,.., }iT i Mx . We seek the minimum enclosing 

hypersphere  that contains the 
training set . This is a constrained optimization problem 
stated as: 

2 2{ :|| || }S x x a R
T

min( )R  subject to , 1,.., .S i Mxi

The center a and radius R of the minimum enclosing 
hypersphere are found by optimizing the following 
Lagrangian: 

2 2( , , ) 2 .i i i i i
i

L R R Ra < x ,x a,x a,a >

The first term in this equation is the radius which we aim to 
minimize. The second term constrains the hypersphere to 
contain each training point xi.  Taking the partial derivatives 
of L with respect to R and a and setting them to 0 yields 
another expression for the Lagrangian function to be 
maximized with respect to the i, : 

,

.i i i i j i j
i i j

L < x ,x < x ,x
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After optimizing L with respect to i, it is typical to 
discover a large fraction of the weights i, is equal to zero. 
The training examples with non-zero weights are called 
support vectors and lie on the boundary of the support 
region.  Hence, the support vectors must lie on the boundary 
of the hypersphere.  Therefore the SVDD yields a sparse 
representation of the density function’s support expressed 
entirely in terms of the support vectors.   

A hypersphere will not likely give a tight representation of 
the shape of the background density function in the original 
input space. To model arbitrarily complex distributions, one 
may resort to the nonlinear SVDD, which maps the data 
from the input space to a higher-dimensional feature space 
through the use of a mapping (x). This models the support 
of the distribution as a minimum enclosing hypersphere in 
the feature space.  This hypersphere corresponds to a tighter 
description for the support of the PDF in the original input 
space.

Proceeding as in the linear SVDD case, it can be shown, 
using the well-known “kernel trick,” that the SVDD statistic 
is then expressed as: 

2( ) 2 ,i i
i

SVDD R K Ky y,y y x ,

where K is a kernel function defined as 
. We use the popular Gaussian 

radial basis function (RBF) for the kernel function, defined 
as

( , ) ( ), ( )K x y x y

2 2( , ) exp( / )K x y x y .  The SVDD function then 
simplifies to 

( ) , ,i i
i

SVDD C Ky y x

where C is a constant offset, since K(y,y) = 1.  The SVDD-
based decision rule is then expressed as SVDD(y) t for 
some threshold t.

Finally, the RBF scale parameter 2 controls how well the 
SVDD generalizes to unseen data and the tightness of the 
support boundaries [7][8].  This allows the SVDD to model 
non-Gaussian, multi-modal distributions.  An optimal value 
for 2 can be found using cross-validation or a minimax 
technique [13][1].

3. SVDD GLOBAL ANOMALY DETECTOR 
The multi-modal background characterization of SVDD is 
virtually automatic and does not require any a priori 
knowledge of background characteristics (e.g. the number 
of components to be used in a mixture model).  As a result, 
SVDD is well suited for global background 
characterization, able to achieve high detection performance 
and low false alarm rates with extremely rapid 
computational processing. Global background modeling 
also provides the capability for enhanced ROC performance 
due to: a) more accurate background characterization 

obtained in the presence of closely spaced targets which is 
corrupted when a local model is used, and b) the rejection of 
local anomalies which are not truly anomalous to the scene 
(e.g. isolate trees, shadows).

The steps for the global SVDD anomaly detector are as 
follows:

Randomly select a set of N background pixels from 
the image as the training set 
Given the set of background spectra, estimate an 
optimal value for , the scale parameter of the RBF 
kernel, using a cross-validation or minimax method 
[1][13].
Using the spectra from the training pixels, estimate 
the SVDD parameters (a, i, R) to model the 
region of support for the background clutter.
For each pixel in the image perform the decision 
test:

o If SVDD(y), the SVDD test statistic for 
pixel y, is less than the detection threshold 
t, the pixel is part of the background. 

o Else, declare the pixel as an anomaly. 

Note that since this is a global method, only the last step 
needs to be performed for each pixel, as the training is done 
only once for the entire image.  To further reduce the 
computational expense of the algorithm, we take a closer 
look at the SVDD(y) function.  Expanding SVDD(y) yields:  

'

2

2( ) ( exp ,i
i i

i

f C c C - y xy y)

where
'

2
2exp( )i i

iC - x x  may be pre-computed at the 

beginning after the training when the support vectors xi
have been found.  Therefore, only the inner-product in the 
exponential term on the right-hand side of the above 
equation needs to computed at every pixel. 

4. COMPUTATIONAL ANALYSIS
HSI anomaly detection algorithms can be divided into two 
primary categories:  local background modeling and global 
background modeling.  For local background modeling, the 
background is re-estimated in a hollow window for each 
pixel under test. This results in high computational cost due 
to the necessity of background estimation at each spatial 
location in the hypercube.  For global background 
modeling, the background is estimated once for the entire 
hypercube.  However, since the global background contains 
many materials, the modeling required is much more 
complex than that required locally.   

The RX algorithm models the local background in the 
vicinity of each pixel as a unimodal Gaussian distribution, 
and has been the standard for HSI anomaly detection in 
recent years [3].  The computational complexity of this 
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approach stems from the inversion of the covariance matrix 
that is required for the background estimation which in 
general is of order  where N3( bO N )

)

)

)

b is the number of bands. 
(We note that we assume direct inversion implementation 
which is cubic.  Efficient inversion methods are available 
which reduce complexity to O(N2.376), but such methods are 
not often used.  Any reduction in inversion complexity 
would similarly apply to other approaches where an 
inversion is used so there is no loss of generality in the 
comparison of SVDD to RX.)  Due to the local nature of the 
estimation, this inversion is required at every pixel, so 
actual processing is of order where N3( p bO N N p is the 
number of spatial “pixels” in the hyperspectral image.  By 
using a global background estimation for RX, Np can be 
removed from the order of magnitude of the processing, 
however, the anomaly detector will not work well since the 
background is not globally unimodal.  A variation of the RX 
algorithm, the Gaussian Mixture RX (GMRX) algorithm, 
may be used to provide a better fit to the background model 
by employing a mixture of Gaussians to estimate the multi-
modal nature of the background.  This process has order 

 where N3( m bO N N m is the number of Gaussian components 
in the mixture.  However, the number of required 
components is not known a priori, so in practice, the 
background model is estimated inaccurately resulting in 
poor detection performance.   

The Gaussian Markov Random Field (GMRF) anomaly 
detector [11] uses characteristics of the GMRF to compute 
the covariance inverse indirectly resulting in processing 
which is linear with respect to band dimensionality. 
Computational complexity is derived in [11] where the 
dominant processing may be shown to be where
N

2( b cO N N

c is the number of clutter pixels. Due to the fact that the 
background modeling is unimodal, this approach is not well 
suited for global background characterization.

The SVDD approach does not require a covariance matrix 
inverse computation and is also linear with respect to 
spectral dimensionality. Processing is commensurate with 
the inversion of the system matrix kernel which is of order 

.  Since Support Vector Machines (SVMs) are 
effective with few exemplars, the background modeling is 
very robust to low training so N

3( )cO N

c may be relatively low.  In 
addition, since the background modeling is multi-modal, 
automatic and does not require any a priori knowledge of 
background characteristics (e.g. the number of components 
to be used in a mixture model), global background 
characterization may be reliably performed.  As a result, 
SVDD is able to achieve high detection performance and 
low false alarm rate with rapid computational processing.  
Computational complexity and associated characteristics 
affecting algorithm performance are summarized in Table 1.

Processing
Complexity 

Clutter Model / 
Notes

RX 3( )p bO N N L, U, N
GMRX 3( )bO N G, M, N / 1  
GMRF 2( )b cO N N L, U, N 
SVDD (local) 3( )p cO N N G, M, HDNP / 2 
SVDD (global) 3( )cO N G,M, HDNP / 2 

Key: Np, Nb, Nc: Number of pixels, spectral bands, clutter 
training samples  

L: Local , G: Global, N: Normal/Gaussian,  U: Unimodal, 
M: Multimodal 

HDNP: High dimensional non-parametric 
1: Requires mixture dimension a priori
2: Nc small (SVM effective with few exemplars)

Table 1: Processing complexity and algorithm 
characteristics affecting detector performance.

5. EXPERIMENTS 
We compare the detectors using images taken from the 
Wide Area Airborne Mine Detection (WAAMD) dataset.  
The COMPact Airborne Spectral Sensor (COMPASS) 
sensor, providing 256 bands in the VIS/NIR/SWIR part of 
the spectrum (400-2350nm), was used to image the 
minefields.  For the images used in this study, the sensor 
was flown at an altitude of 2000 feet, with a Ground Sample 
Distance (GSD) of approximately 8 inches.  The images 
contain two types of mines whose sizes are approximately 
2x2 pixels. 

Global processing as employed by global SVDD results in 
enhanced false alarm suppression due to the rejection of 
candidates which are locally anomalous but not globally 
anomalous (e.g. isolated trees).  In addition, it provides 
enhanced detection due to enhanced background 
characterization that is not forced to include target spectra 
when targets are in close proximity to each other.  Figure 1 
shows ROC curves depicting the probability of 
detection/False Alarm (ROC curve) performance of the RX, 
GMRF, local SVDD, and global SVDD algorithms on a 
sample 256 256 145 hypercube containing 38 targets.  Due 
to the large disparity in performance between detectors, we 
also show a zoomed-in view of the upper left portion of the 
ROC plots in Figure 2 to provide a clear view of the 
performance for the global SVDD detector.  Table 2
provides processing times for each of the algorithms. 

We note that using global modeling for RX and GMRF is 
not a viable option due to the unimodal clutter 
characterization of these algorithms that does not enable 
global modeling of the clutter.  For the case shown, the 
targets were on the order of 2 2 pixels (spatially) which 
adversely affects the assumptions of the Markov modeling 
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which in its current implementation, uses a minimum of a 
3 3 Markov window. 

Figure 1: ROC performance for the GMRF, RX, local 
SVDD and global SVDD detectors.

Figure 2: Zoomed in view of upper left region of ROC plots 
in Figure 1 providing a clearer view of global SVDD 
performance.

Algorithm Runtime (s)
Global SVDD (C++) 1.2
Local SVDD 
(MATLAB)

43

GMRF (C++) 28
RX (C++) 506

Table 2: Processing times for global SVDD, local SVDD, 
GMRF and RX anomaly detectors on a 256 256 145
hypercube.

6. CONCLUSION
We have successfully developed and demonstrated an HSI 
anomaly detector that can effectively detect targets more 
rapidly and robustly than alternative detectors. The 
detector’s strength lies in the SVDD formulation which 

provides automated, multi-modal, high-dimensional non-
parametric modeling for the background clutter that is 
readily adaptable to global background characterization. 
Current throughput of one 256 256 145 hypercube per 
second on a PC platform indicates the viability of real-time 
anomaly detection using this method.   
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