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ABSTRACT

 
This paper describes a new adaptive spectral matched filter 
that incorporates the idea of regularization (shrinkage) to 
penalize and shrink the filter coefficients to a range of 
values.  The regularization has the effect of restricting the 
possible matched filters (models) to a subset which are more 
stable and have better performance than the non-regularized 
adaptive spectral matched filters. The effect of 
regularization depends on the form of the regularization 
term and the amount of regularization is controlled by so 
called the regularization coefficient.  Experimental results 
for detecting targets in hyperspectral imagery are presented 
for regularized and non-regularized spectral matched filters. 
 
Index Terms—spectral matched filter, regularization,      
shrinkage, hyperspectral imagery 
 

1. INTRODUCTION
 
Target detection using a Spectral Matched Filter (SMF) is a 
well-known approach in detecting objects of interest in 
hyperspectral imagery [1]-[3]. SMF is based on the 
assumption of a linear model where the spectral signature of 
the target and the background clutter covariance matrix are 
assumed to be known.  Typically, the target spectral 
signature is obtained from a spectral library or from a set of 
training data, which is used in conjunction with the 
estimated covariance matrix of the background clutter data.  
In the adaptive SMF the background clutter covariance 
matrix is estimated from a small number of samples 
surrounding the test pixel in order to adapt the matched 
filter to the local statistics.  The expression for the adaptive 
spectral matched filter involves the spectral signature of the 
desired target and the inverse of the local clutter covariance 
matrix.   However, this covariance matrix is usually singular 
and rank deficient due to the high dimensionality of the 
hyperspectral data and the use of a small number of samples 
surrounding the test pixel.  This is the main reason for the 
poor performance of the adaptive spectral matched filter.  
Representing the inverse covariance matrix in terms of its 
eigenvalue decomposition, it becomes clear that the 
behavior of the inverse covariance matrix depends on the 
small eigenvalues which could make the inverse unstable.  
In order to reduce its sensitivity to statistical errors we could 

stabilize the inverse by discarding a number of eigenvectors 
with small eigenvlaues [3] or by adding a scaled identity 
matrix to the background covariance matrix before 
inverting.   

In this paper, the SMF design is first formulated as 
maximizing the signal-to-background clutter ratio with a 
constraint on minimizing the   norm of the filter 
coefficients which is referred to as the regularization term. 
We show that this is equivalent to adding a scaled identity 
matrix to the background clutter covariance in the design of 
the SMF.   Scaling the identity matrix as shown in Section 
III controls the amount of regularization, the scale is 
referred to as the regularization coefficient. Adding a 
regularization term to a cost function in order to control 
over-fitting or reducing the model complexity is known as 
shrinkage methods [4]. For example, the well known ridge 
regression [5] (regularized least squares) includes a  
norm constraint on the regression coefficients in its 
regression model.  Another shrinkage method similar to the 
ridge regression problem is the lasso estimator [6] where the 

 norm of the regression coefficients is used as the 
regularization term. Similar regularization ideas are used in 
neural networks and linear classifiers.  In neural networks, it 
is known as weight decay [5] which is used for pruning and 
reducing the number of weights while in the classification 
literature it is known as maximal margin classifiers [7].  
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This paper is organized as follows. Section 2 introduces 
the linear matched filter as maximizing the signal-to-clutter 
ratio. In Section 3 a regularized spectral matched filter is 
described by including a quadratic regularization term.  
Performance of the SMF and regularized SMF on 
hyperspectral imagery is provided in Section 4 and 
conclusions are given in Section 5. 
 

2. ADAPTIVE SPECTRAL MATCHED FILTER
 
To define an adaptive spectral matched filter, let the input 
data be modeled as a linear superposition of the desired 
target spectral signature and background clutter noise given 
by 

  nsx a ,   (1) 
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where  is the observation spectral sample 

with  spectral bands, is the spectral 
signature of the desired targets, is the attenuation constant 
(target abundance measure), and  is the background  
clutter noise. When  no target is present and when 

 a target is present. 
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We start by formulating our adaptive spectral matched 
filter  as a projection that maximizes the signal-to-clutter 
ratio given by 
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where defines the filter coefficients with 

the constraint that and  is the background 

clutter variance. 
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1ˆ XXC is the estimated covariance 

matrix of the background clutter and  is a 
 matrix of  centered (mean-removed) reference 

pixels obtained from the test input image.  Maximizing (2) 
is equivalent to minimizing the cost function  with 
respect to   
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where  is the Lagrangian multiplier.  Differentiating (3) 
with respect to gives w

swC
w
E ˆ2 .   (4) 

Setting (4) equal to zero the matched filter is given by 
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2

.    (5) 

The Lagrangian multiplier, , is found using the constraint 
equation as 

 1ˆ
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and therefore, 
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Substituting (7) into (5) the matched filter is given by 
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the output of the filter for a given input  is given by x
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Minimizing  is also known as the best linear 
unbiased estimator (BLUE) [1].  

)( ,E w

The performance of a SMF that uses global background 
clutter statistics has been found to be much worse than an 
adaptive SMF that uses the local clutter statistics around the 

test pixel.  In our adaptive SMF, the background covariance 
matrix was calculated locally by using a dual window 
centered at each pixel. The dual window consists of two 
regions, an inner region approximately the same size as the 
target and a larger outer region representing the local 
background clutter. The background clutter statistics is only 
obtained from the pixels within the outer region, this way 
the spectral matched filter is made adaptive to the local 
clutter statistics. Since a relatively small set of samples are 
used to represent the background clutter statistics around 
each test pixel, the background clutter covariance  matrix 
needs to be regularized in order to obtain a numerically 
stable pseudo-inverse as discussed in the next Section 3.  
 
3. REGULARIZED SPECTRAL MATCHED FILTER 

 
Due to the high dimensionality of the input data a large 
number of samples are required to estimate the true value of 
the covariance matrix of the background.  However, in the 
adaptive matched filter the covariance matrix is estimated 
by using only a small number of spectral pixels surrounding 
the test region. Therefore, the estimated C  is singular and 
its inverse does not exist and its pseudo-inverse could be 
unstable due to very small eigenvalues.  One approach to 
alleviate this problem is to eliminate some of the 
eigenvectors with small eigenvalues by using the singular 
value decomposition of the inverse matrix [3].  Another 
approach is to include a regularization term in the cost 
function . The regularization usually imposes a 
numerical constraint on the size of the matched filter 
coefficients.  The regularized cost function  is 
now given by 

ˆ
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where  is the regularization coefficient and )(w is the 
regularization term given as 
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for .  The effect of the regularization term is two folds 

first it makes sure that the estimated C  is non-singular and 
secondly it shrinks the filter coefficients to a range of values 
with mean zero. The behavior of regularization depends on 
the value of .  When 

0q
ˆ

q 1q  it corresponds to the lasso 
shrinkage method which forces some of the filter 
coefficients to zero resulting in a sparse matched filter. 
Regularization with  2q  corresponds to ridge regression 
or weight decay in the neural network literature.  

   The regularization constraint used in our penalized 
matched filter is 2q  which corresponds to the quadratic 

regularization .   ww w T)(
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The cost function is now given by 

wwswwCww TTT )1(ˆ),( ,E .  (12) 
Differentiating (12) with respect to w  gives 

wswC
w
E 2ˆ2 ,  (13) 

and setting it to zero we can solve for w  
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Using the constraint equation , the Lagrangian 
multiplier  is found as  
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Substituting (15) into (14) the regularized matched filter is 
now given by 
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the output of  the filter for a given input  is given by x
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This is the expression for the regularized spectral matched 
filter used in  our  implementation. Compared with SMF (9) 
it can be seen that the regularized matched filter suppresses 
the influence of the low eigenvalues by forcing the 
background clutter covariance matrix to become more 
isotopic (whitened). At high regularization ( ), (17) is 
equivalent to a SMF with a uniform background clutter 
noise, the resulting filter will be given by . At no 
regularization ( ) (17) is equivalent to (8) an unstable 
adaptive spectral matched filter. 
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4. EXPERIEMNTAL RESULTS  

 
The real hyperspectral images are from a HYDICE 
(HYperspectral Digital Imagery Collection Experiment) 
sensor. The HYDICE imaging sensor generates 210 bands 
across the whole spectral range (0.4 -- 2.5 ). But we only 
use 150 bands by discarding water absorption and low SNR 
bands; the spectral bands used are the 23rd--101st, 109th--
136th, and 152nd--194th. Two HYDICE images from the 
Desert Radiance II (DR-II) data collection and the Forest 
Radiance I (FR-I) data collection were used to test both the 
conventional and regularized spectral matched filters. The 
DR-II image contains 6 military targets located in the dirt 
road; FR-I image includes total of 14 military targets along 
the tree line.  Fig. 1 (a) and (b) show FR-I and DR-II 
hyperspectral images of 150 spectral bands, respectively. 
All the pixel vectors in a test image are first normalized by a 

constant, which is a maximum value obtained from all the 
spectral components of the spectral vectors in the 
corresponding test image, so that the entries of the 
normalized pixel vectors fit into the interval of spectral 
values between zero and one. 

m

 

  
      (a)                                          (b) 

Fig. 1.  (a) Original Forest Radiance, (b) original Desert 
Radiance 

The receiver operating characteristics (ROC) curves 
representing detection probability versus false alarm rates 
were generated to provide quantitative performance 
comparison as well as qualitative performance comparison. 
To generate the ground truth information we obtained the 
coordinates of all the target pixels within a rectangular 
region containing each target. All the pixels on the target 
were considered as desired target points to be detected. Our 
ROC curves, based on the ground truth information from 
the HYDICE images, represent the number of target pixels 
detected verses false alarm rate.  In all the experimental 
results the ground truth target spectral signatures for DR-II 
and FR-I were obtained by averaging the target samples 
collected from the left most target in the corresponding test 
image.  

 

  
          (a)                                          (b) 

Fig. 2. (a) SMF with 0 no regularization for FR-I image  
b) SMF with 0  no regularization for DR-II image  
 

   Simulation was performed on several hyperspectral 
images and ROC curves were plotted for the regularized and 
the conventional matched filters. Experimental results for 
the regularized matched filter for different values of the 
regularization coefficient is provided through ROC 
curves and compared with the non-regularized 0 result. 
As can be seen from the ROC plots in Fig. 4, the best values 
for the regularization coefficient was found to be 1.0 . 
Fig. 2 (a) and (b) show the outputs of the conventional 
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adaptive SMF for FR-I and DR-II with no regularization, 
respectively.   
   

 
       (a)                           (b) 

Fig. 3. (a) Regularized SMF with  for FR-I image, 
b) Regularized SMF with  for DR-II image 

1.0
1.0

     

Fig. 3 (a) and (b) show the outputs of the regularized SMF 
for FR-I and DR-II with the regularization coefficient equal 
to 0.1, respectively.  Fig. 4 (a) and (b) show the ROC plots 
for the conventional adaptive SMF and for the regularized 
adaptive SMF at several different regularization coefficients 
for FR-I and DR-II, respectively. Overall, the performance 
of the regularized spectral matched filter is much better than 
the conventional spectral matched filter which uses no 
regularization.   
 

  
        (a)    (b) 

Fig. 4  ROC plots for (a) FR-I image and  (b) DR-II image 
at different values of  . 6 ,3,1,1.0,0 and    
 

 
Fig. 5  ROC plots for a global matched filter applied on DR-
II image at different values of  . 
 

To obtain the effect of regularization on the filter 
coefficients we designed a single global matched filter for 
the test image DR-II by using a background covariance 
matrix obtained from the whole image. Fig. 5 show the 
ROC curves for several different  values. Fig. 6 (a) shows 

the matched filter coefficients for which has extreme 
positive and negative values. Fig. 6 (b) shows the filter 
coefficients for several different  values. At large  
values the filter coefficients tend to become less oscillatory 
and more smooth. 

0

 

                            (a)                       (b)
Fig. 6  (a) Filter coefficients values for  and (b) filter 
coefficients values for several values of  

0

5. CONCLUSIONS
 
We have extended the conventional SMF detector to a 
regularized version by including a regularization term that 
forces the filter coefficients to shrink and become smooth.  
The conventional SMF and the regularized SMF were 
implemented with several different values for the 
regularization coefficient. In general, regularized SMF with 
appropriate regularization coefficient showed a superior 
detection performance when compared to the conventional 
SMF for the HYDICE images tested in this paper. Different 
forms of regularization will impose different prior 
distributions on the filter models which need to be studied 
in the future research. Kernel spectral matched filter [8] can 
also be regularized for improved performance. 
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