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ABSTRACT 
This paper presents a Kalman filtering approach to predicting 3-
D video infrared (IR) scenes as a CMOS multi-coordinate axis 
sensory-camera mounted on a mobile vehicle moves forward in 
a controlled environment. Potential applications of this research 
can be found in indoor/outdoor heat-change based range 
measurement, synthetic IR scene generation, rescue missions, 
and autonomous navigation. Experimental results reported 
herein dictate that linear Kalman filtering based scene prediction 
accurately estimates future frames in range and intensity 
sensing. The low least mean square error (LMSE), on the 
average of 1%, proves the reliability of the approach to IR scene 
prediction. Currently, the proposed method is devised for piece-
wise linear motion of the sensory system as it navigates in hall-
way or corridor.  

Keywords: 3D scene, range images, scene prediction, Kalman 
filtering, linear camera motion 

1. INTRODUCTION 
Recently, 3-D scene modeling has gained importance as imaging 
devices have acquired high-resolution range sensing capability. 
This, in turn, has lead to a great research effort in the vision area 
toward developing more accurate and reliable solutions to such 
diverse problems as unmanned navigation and guidance, 
surveillance, tracking, mapping, virtual world simulation, 
precision manufacturing, multimedia networking, animation, 
and rescue missions. Aside from the consumer-end applications,
indoor and outdoor navigation has been greatly influenced from 
imaging-science developments and newly introduced range 
measurement devices. To this end, many 3-D image-motion 
estimation and modeling problems have been widely 
investigated in various indoor and outdoor navigation settings 
[1], [2], [3], [6], [9], [10], [11], [15], [19]. Determining 
egomotion (i.e., finding the motion of the camera based on its 
output image in response to the scene in question) has also been 
studied in the research effort discussed in [4].  Vosselman and 
Dijkman [5] presented a scheme to create 3-D regions via point 
clouds and planar region growing. Rozovskii and Petrov [7] 
successfully presented an optimal nonlinear filtering method for 
tracking-before-detection in IR image sequences. Another 
method that applies range based imagery was developed by 
King, et al. [8]. Their scheme makes use of multiple range scans 
for recognizing locations. Kim and Kweon [12] presented a 
robust and effective feature map integration method for IR target 
recognition. They reported that noise in an IR image causes 
estimation and shape matching instabilities in a target 
recognition system. Infrared imaging itself has also been 
extensively studied. Ibarra-Castanedo et al.’s work [13] 
discusses the difficulties in analyzing infrared data with a focus 
toward non-destructive testing. In [14], the problems of 
detecting point targets in IR images are examined. The research 

effort summarized herein has shown that it is relatively difficult 
to detect, extract, or highlight features in IR images. Hence, an 
approach that blindly searches for such attributes would likely 
produce false positives. A Kalman-based prediction, however, 
could yield image estimates more immune to noise. This, in 
turn, introduces a premise that instead of creating a model to 
match with the scene measurements, as is done in much of the 
research on object detection and tracking [3, 6], the scene 
estimates guide the tracker or classifier. The research presented 
in this paper uses an adaptive linear estimator on time varying 3-
D scene data to predict future scenes. After modeling the frame-
to-frame positions and velocities of each pixel, a Kalman filter is 
implemented for finding the future scene state. The effectiveness 
of this approach is tested by comparing the predicted scene to 
the future scene sensed using the Swiss Ranger SR 3000 CMOS 
camera [17, 18].  

2. DESCRIPTION OF OVERALL APPROACH
The scene prediction method discussed in this work originated 
with the premise that IR scene modeling difficulty can be eased 
by accompanying the process with scene estimation and 
prediction. The main advantage of not attempting to model and 
observe the features of a 3-D scene is the alleviation of 
unreliable feature extraction and the promotion of a robust 
adaptive system that adjusts itself as the environment changes. 
The Kalman filtering approach to 3-D scene prediction is 
comparable to estimation and prediction, in concept. The 
simplest method that one can design is to assume that the next 
state of a moving object will be in the same direction as the 
previous trajectory. This simple assumption holds true for 
piecewise linear-wise motion. Of course, it is often 
supplemented by several other computationally complex 
approaches. Figure 1 is an example of the type of data that is 
used, and shows the x, y, z, intensity, and resulting point cloud 
image of a frame taken from the SwissRanger Camera [17]. In 
this work, future frames are predicted using the current and 
previous image frames. There are many approaches that tackle 
the motion of overlapped objects in a scene; however, the 
approach in this paper does not take this problem into account 
without losing its generality since the idea is not to detect 
motion, but to predict the scene with respect to the egomotion of 
the camera. 

The system is designed to predict future frame contents by way 
of stochastic estimation and Kalman filtering. The future frame 
information is predicted with the current frame information. 
Next, the prediction error (e) is checked against the chosen 
threshold, and then the Kalman filter parameters are adjusted as 
necessary in order to meet the threshold. The predicted values, 

T
zyx ˆˆˆ , are compared with the actual measured 

values, Tzyx ˆˆˆ , and the resulting error is fed to the Kalman 
filter to be used for the next iteration. 
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Fig.1. SwissRanger (x,y,z), intensity, and point-cloud images of 
a hallway. 

The data is internally represented as 3 independent range 
images, each of which corresponds with the value in that 
particular Cartesian direction. Furthermore, as the scene changes 
(either due to the position / orientation changes of the camera, or 
from a moving object) the scene will move/rotate with a certain 
velocity. In this study it is assumed that the sensing unit moves 
(or accumulates data) slowly enough that changes in the scene 
can be observed linearly. Three images of a frame are sensed 
through x, y, and z coordinate axes allowing Kalman prediction 
to be performed on each axis independent of the others.  

The Kalman estimator designed in this study relies on a linear 
prediction model that can be expressed as 
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where  is a rotation and scaling matrix,  are the 
current range values in each axis, and  are the current 
velocity estimates, and T is the matrix transposition operation.  
The indices k and k+1 represent the current and future state 
values. For computational simplicity, the filter operates on 

 windows from each axis of the full image. A linear 
Kalman filter’s equations may be written as [16]   
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where the state vector xk will be of length  in the form  nm2

                 
These values are taken from pixels inside the m by n window of 
the scene that is currently being operated on as shown in Figure 
2. In the current state, xij represents the pixel value at point i,j in 
the local  window, while  denotes the respective 
velocity of the pixel at the designated point in each of the axial 
frames. In Eqn. 2,  is the propagated state vector one time 
epoch ahead of the current state. The state transition matrix 

nm ijx

1kx

k is
the Kalman filter implementation of matrix A of Eqn.1. 

Fig. 2. m x n local window operating on (x, y, z) images. 

The resulting state transition matrix equates to  

I
II

k 0
                               (5) 

where, I is an nm  sized identity matrix and 0 is an nm
sized zero matrix. The state transition model assumes that the 
estimated velocity is constant, and any changes are due process 
noise (wk). The noise vector wk is modeled to be zero mean 
Gaussian white noise. In this study we consider two components 
contributing the elements of wk; i.e. pnij, the pixel range value 
process noise, and vnij, the axial range velocity. Qk is the 
covariance matrix of the process noise vector. The second set of 
Kalman equations dictate how the current state is related to the 
current measurement made by the range camera. They are given 
by 
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where zk is a vector representation of the measurement within 
the nm  window at time tk, the vector  is the measurement 
error vector, and R

kv
k is the measurement error covariance matrix. 

Hk is the state relationship matrix showing how the previously 
predicted value xk is related to the measured value zk. Here, I is 
the nm identity matrix and O is a zero matrix of the same 
size. The measurement vector contains only the pixel range 
values, since no velocity components can directly be measured. 
Figure 3 depicts the Kalman filter implementation details. The 
process and measurement noise vectors will remain constant 
through the Kalman prediction. The error covariance vector is 
continuously updated through the Kalman filtering process with 
an initial estimate of zero. The filter is given an error covariance 
matrix previous estimate  as the covariance of the current 
state.  

kP

If the velocity is determined to be either above or below a 
selected threshold, the filter estimate is considered to be invalid 
and iteration is terminated. The filter provides estimates of the 
error within the local nm  window. This covariance can be 
examined to help determine if the current window estimate 
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should be used. Furthermore, tracking or navigation can benefit 
from determining which part of the image is moving in free 
space by examining the covariance and the local velocity 
estimates. 

Fig. 3. Kalman linear estimator (from [16]). 

3. EXPERIMENTAL RESULTS
The 3-D scene data used in this research is gathered using a 
SwissRanger SR 3000 camera [17] that senses the scene by 
gathering gray-scaled intensity data and x, y, z spatial 
coordinates in IR images (850nm) via time-of-flight 
measurements. These time-of-flight measurements provide an 
efficient way to collect 3-D scene data via phase-shift 
measurements of a reflected modulated signal [18]. Four 
projection images are created per view, three of which are for 
the spatial positions of scene points relative to the camera’s 
image-plane coordinates. The fourth is used for the IR scene 
intensity map. The Swiss Ranger SR 3000 camera provides 
range measurements up to a distance of 7.5 meters with a frame 
resolution of 176x144 pixels and a maximum frame rate of 50 
fps (frames per second). Since the image has a relatively high 
resolution, the Kalman filter equations are computed by using 
3x3 non-overlapping subsets of the images in each frame 
independently. The predicted results are then combined to create 
a full 3-D scene image array. In our experiment the pixel noise 
(pnij) is assumed to be 0, and the velocity noise (vnij) is taken to 
be 1 m/s. The state transition matrix k  is adjusted for a 3x3 
window based Kalman filter realization as an 18x18 matrix 

given by , where I is a 9x9 identity matrix and 0 is a 

9x9 zero matrix. Figures 4 and 5 show the measured and 
predicted data for two consecutive frames 12 and 13, 
respectively, while Figures 6 and 7 depict the corresponding 3-D 
point cloud images. These figures illustrate the self-correcting 
nature of the Kalman filter. Although, the predicted image in 
Fig.8 is visibly distorted, the image in Fig.7 is much closer to 
the actual one. 
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The prediction error for the described method is calculated in the 
least mean square sense, which is given by  

Fig. 4. x, y, z images for frame #12. 

Fig. 5. x, y, z images for frame #13. 

Fig. 6. Measured and predicted point clouds for frame #12. 
where denotes x, y, or z image values for the frame k+1. In 
Figure 8, the LMSE is depicted for a selected set of ten frames. 
It appears from this and additional tests that the initial value of 
the LMSE error can be as high as 4.2% and drops below 1% as 
prediction converges to the desired (actual) value. Once the 
algorithm begins to converge, the resulting error levels appear to 
become relatively flat. Furthermore, the results for all frames are 
drawn in Fig. 9 to give an overall assessment of the algorithm’s 
performance.  In all tests, once the filter adjusts itself, error, for 
all frame axes, falls to an acceptably low level. Remaining 
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fluctuations may be attributed to changes in the IR images 
and/or noise. 

Fig. 7. Measured and predicted point clouds for frame #13. 

Fig. 8. LMSE error for frames 9-19. 

Fig. 9. LMSE measurement results for all frames used. 

4. CONCLUSIONS
This work has the objective of predicting scenes as the camera 
or sensory device mounted on a mobile platform (e.g., walking 
robot, unmanned vehicle, low altitude aircraft, etc.) moves. 
Experimental results reported herein demonstrate that linear 
Kalman filtering based scene prediction can accurately estimate 
the next frames in range and intensity images to a certain degree 
of accuracy. The low LMSE error measurement, on the average 
of almost 1%, proves the reliability and robustness of this 
approach to IR data processing. The presented results are within 
the allowable error range of the low-cost cameras used for the 
experimentation. Future research is undertaken for non-linear 
camera motion and occlusion cases. 
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