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ABSTRACT 

In order to aid the interpretation of seismic data, we present 
a new method for the denoising and fusion of multiple 3D 
registered blocks of the same area of subsoil. We propose to 
combine low-level fusion and diffusion processes through 
the use of a unique model based on Partial Differential 
Equations (PDE). The denoising process is driven by the 
Seismic Fault Enhancing Diffusion equation. Meanwhile, 
relevant information (as seismic faults) is injected in the 
fused blocks by an inverse diffusion process. One of the 
advantages of such an original approach is to improve the 
quality of the results in case of noisy inputs, frequently 
occurring in seismic unprocessed data. Finally, two 
examples will demonstrate the efficiency of our method on 
synthetic and real seismic data.  

Index Terms— seismic data, multi-azimuth acquisition, 3-D 
filtering, anisotropic diffusion, fusion 

1. INTRODUCTION 

The interest of multi-azimuth acquisition of 3-D reflection 
seismic data has been proved during the last few years. 
Multi-azimuth acquisition is particularly attractive in case of 
small Signal-to-Noise Ratio. In these cases, the multi-
azimuth data must yield to improvements in fault resolution. 

The combination of the information provided by the 
different sources (i.e. acquisition for different azimuths) can 
be achieved by means of classical fusion techniques. The 
aim is to obtain a final result including the relevant 
information about seismic events in general and faults in 
particular.  

Image fusion is a process consisting in combining 
different sources to increase the quality of the resulting 
images. In case of pixel-level fusion, the value of the pixels 
in the fused image is determined from a set of pixels in each 
source image. 

In order to obtain output images which contain better 
information, the fusion algorithms must fulfil some 
requirements: the algorithm must not discard the relevant 

information contained in the input images. Additionally, it 
must not create any inconsistencies in the output images. 

In the last decade, a lot of works were dedicated to 
image-level fusion methods [1]. Among the classical 
methods, we can notice the well known methods based on 
pyramid decompositions [2,3], wavelet transform [4], or 
different weighted combinations [5]. These techniques have 
been applied in a wide variety of application fields including 
remote sensing, medical imagery or defect detection. 

The most popular fusion methods are based on a 
multiscale decomposition. These approaches consist in 
performing a multiscale transform on each source image to 
obtain a composite multiscale representation. Then, by 
defining a selective scheme, the fused image is obtained 
through the use of an inverse multiscale transform.

In this paper, we propose an original low-level approach 
based on the use of Partial Differential Equations. The PDE 
formulation is inspired by the works dedicated to the non-
linear diffusion filters.  

The simplest diffusion process is the linear and isotropic 
diffusion that is equivalent to a convolution with a Gaussian 
kernel. The similarity between such a convolution and the 
heat equation was proved by Koenderink[6]: 

)),,(( Utyxcdiv
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U ∇=
∂
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In this PDE, U represents the intensity function of the 
data; c is a constant which, together with the scale of 
observation t, governs the amount of isotropic smoothing. 
Setting c=1, (1) is equivalent to convolving the image with a 
Gaussian kernel of width t2 . Nevertheless, the application 
of this linear filter over an image produces undesirable 
results, such as edge and relevant details blurring.  

To overcome these drawbacks Perona and Malik [7] 
proposed the first non-linear filter by replacing the constant
c with a decreasing function of gradient U∇ . Practical 
implementations of the P-M filter give impressive results, 
noise is eliminated and edges are kept or even enhanced 
provided that their gradient value is greater than a threshold. 

Shock filters constitute another successful class of PDE-
based filters. In order to sharpen an image, these filters, 
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initially proposed by Osher and Rudin[8] employ an inverse 
diffusion equation. The well-known stability problem of the 
inverse heat equation is solved for the discrete domain by 
the mean of minmod function [8]. 

Other important theoretical and practical contributions 
were brought by Weickert [9-10]. The proposed EED (Edge 
Enhancing Diffusion) and CED (Coherence Enhancing 
Diffusion) models are anisotropic diffusion methods or often 
called tensor based diffusion. 

The general equation is written in PDE form, as: 

)( UDdiv
t

U ∇=
∂

∂
                               

(2)

with D some square 2*2 matrix for 2-D images and two 
additional boundary and initial conditions.    

The purpose of a tensor based approach is to steer the 
smoothing process according to the directional information 
contained in the image structure. In the CED, the diffusion 
matrix D is created based on the tensor structure. This tensor 
is a powerful tool for analyzing coherence structures: 

)()( σσρσρ UUKUJ ∇⊗∇∗=∇                (3) 
Each component of the resulted matrix of the tensor 

product ( ⊗ ), is convolved with a Gaussian kernel (Kρ). The 
eigenvectors of Jρ, represent the average orientation of the 
gradient vectors and the structure orientation, at scale ρ. The 
diffusion matrix D in (2) has the same eigenvectors as Jρ, but 
its eigenvalues are chosen according to a coherence 
measure. The diffusion process acts mainly along the 
structure direction and becomes stronger when the 
coherence increases. 

Recently, specific PDE-based approaches were devoted 
to the seismic 3D filtering [11-14]. 

In the next section, we will introduce a PDE formulation 
for fusion-diffusion process. In section 3, we will show some 
results obtained by our fusion-diffusion approach both on 
noisy-blurred synthetic blocks and real seismic data. 
Conclusions and perspectives are given in section 4. 

2. PDE-BASED FUSION-DIFFUSION PROCESS 

In low-level fusion, we consider that each source data 
provide a part of the relevant information we want to obtain 
in the output.  

We propose to apply a PDE-based evolution process for 
each seismic source. At each step of the process, we are 
interested in keeping the relevant information contained in 
the current source and in adding the information from the 
others sources. 

To achieve this task, we propose a PDE process 
involving both a direct seismic oriented diffusion and an 
inverse diffusion process. The general continuous evolution 
equation of a source data can be formalised as: 

( ) ( )( )maxmax
UUgdivUDdiv

t
U

iii
i ∇∇−∇=

∂
∂ β  (4)  

where i represents the current source, max denotes the 

source corresponding to the maximum of gradient absolute 
value and βi  is a positive weight parameter: 
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The weight parameter (β) sets the importance of fusion term 
with respect to diffusion term. 

Even if equation (4) describes the evolution of a single 
block (i), the principle of our approach is to perform the 
process on each of the input blocks. The blocks are updated 
in parallel at each time step. In the next sub-sections, we will 
describe precisely the two terms of the equation.  

2.1 Diffusion term 

As diffusion process, we adopt a dedicated seismic 
diffusion: Seismic Fault Preserving Diffusion (SFPD) [13] 
[14], but other models can be considered as well. SFPD is a 
3D extended model based on Weikert’s 2D CED diffusion. 

The diffusion 3*3 matrix Di, specific at each source, has 
the same eigenvectors as the structure tensor Jρ (equation 3), 
but its eigenvalues are chosen according to a seismic 
confidence measure Cfault, introduced by Bakker [15]. The 
objective of Cfault is to discriminate between fault 
neighborhoods and non-broken horizons: 
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Wwhere μ1>μ2>μ3 are the eigenvalues of Jρ. In order to 
denoise and preserve the seismic faults, we employ this 
measure in the system of choosing the matrix D eigenvalues: 
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where , C are constants and k is the coherence measure 
proposed by Weickert. hτ() is an increasing sigmoid function 
described in [16] taking values in [0 ; 1] which allows to 
parameterize the influence of the confidence measure.The 
originality of our system lies in the second eigenvalue. λ2

takes values between λ1 and λ3 and depends continuously on 
the measure Cfault.  

This system allows to diffuse only in one orientation in 
a fault neighborhood and to perform a diffusion process 
guided by two orientations along the layers otherwise. Thus 
we are able to denoise the seismic blocks while the faults are 
preserving. Also, this approach exempts from the creation of 
false anisotropic structures, artifacts typically observable in 
images processed with the classical tensorial models. 

2.2 Fusion term 

The second term of equation 4 is an inverse diffusion term. 
The aim of such a term is to inject in the current block the 
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seismic relevant information from the other sources. In our 
seismic case, we consider that the relevant information is 
provided by the block corresponding to the maximum 
absolute value of the gradient. 

Looking for the maximum of the absolute gradient value 
leads to detecting the strong discontinuities, like faults. We 
search the maximum of gradient for each voxel. When the 
maximum gradient occurs in the current block, the equation 
is reduced to the diffusion term. Otherwise, if the maximum 
is detected in another source block, we inject the difference 
observed by inversing the diffusion process.  

The quantity of the fusion is modulated by a function g 
of absolute gradient value. In this paper we adopt the 
constant positive function (g()=1), which will provide an 
isotropic behavior for the fusion process. 

Thus, the fusion process is a linear inverse diffusion 
process, which is similar to a Gaussian de-convolution. The 
major drawbacks of this type of process are the instability, 
noise amplification and oscillations [17]. We avoid these 
undesirable effects by imposing the limits of gray level 
variation for each voxel (gray level constraint). The limits 
are fixed considering maximum and minimum values 
through all sources. In order to reduce the impact of noise 
present in the original blocks, these boundaries are evaluated 
at each time step. Using this first constraint, no new local 
extrema are created. 

The aim of the fusion term is to inject high frequency 
signals like edges or faults. When the difference concerns 
low frequency information, the process tends to create new 
discontinuities not present in the input data. To avoid this 
problem, we impose a second constraint by forcing the 
difference between two neighboring voxels to be limited by 
the maximum of the difference observed in the input blocks 
(neighborhood constraint). Using this second constraint, no 
new local edge is created. 

Contrary to the classical fusion methods, our algorithm 
provides with one output for each source block. Obviously, 
the aim is to obtain similar outputs while the relevant 
information is preserved. In practice, we can observe a 
convergence of the process: the distance (i.e. RMSE) 
between the fused blocks decreases in time. The stopping 
time, like in pure diffusion case, is chosen by the operator; 
nevertheless a criterion based on a distance measure or a 
quality factor calculation can be proposed.  

As numerical scheme, we adopt an explicit time scheme 
and the forward and backward approximations for spatial 
derivatives. The maximum gradient absolute value is 
evaluated for the nearest neighborhood (6 voxels). 

3. RESULTS 

This section illustrates the efficiency of our approach on 
both synthetic and real seismic blocks.  

Since it is much easier to judge the efficiency of the 
fusion process on a synthetic image, we propose to use 3-D 

synthetic blocks composed by a stack of layers with a 
sinusoidal profile. One of them is clearly broken by a fault. 
In the second the fault was smoothed using a frequency 
filtering. Both of them are corrupted with additive Gaussian 
white noise (σ=25). Figure 1(a,b) shows a front section of 
the noisy blocks.  

The fusion-diffusion process applied to the noisy blocks 
leads respectively to the blocks shown in Figure 1 (c,d). The 
results are obtaining after 30 iterations with a time step 
dt=0.1, a weight parameter β=0.5 and only with the gray 
level constraint. In addition, parameters specific to SFPD 
diffusion are set to α=10−6,  σ=0.4, ρ=0.8 and τ=0.05 as 
threshold for sigmoid function. 

a)   b) 

c)   d) 
Fig. 1 a,b) The noisy synthetic blocks; c,d) fused-diffused blocks 

The efficiency of the diffusion process is clearly 
illustrated: the two blocks are filtered and the fault is 
preserved in the block at right. The fusion process allowed 
to inject the fault in the block at left. The effectiveness of the 
fusion is proved through the computation of the RMSE 
(Root Mean Squared Error) between the blocks: the RMSE 
between the input blocks is equal to 36.11and it is equal to 
0.056 between the output blocks. Thus, the output blocks are 
quite similar. 

Figure 2 shows results generated from real seismic data. 
These results illustrate that our approach is adapted to 
remove the noise while preserving and injecting the faults. 

4. CONCLUSIONS AND PERSPECTIVES 

In this paper we propose a new method for fusion and 
filtering seismic 3D data. The method is based on a single 
PDE equation including both fusion and diffusion terms. 
The advantage of such an approach is that it can deal with 
noisy data. We can consider our approach as a very general 
framework.
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a)        b)            c) 

d)        e)            f) 
Fig. 2 a,b,c) Real seismic blocks (front section) ; d,e,f) Fused-Diffused blocks corresponding to real blocks 

The diffusion and the fusion terms can be adapted or 
improved to deal with different types of fusion problems 
for 2D and 3D applications. 

In the further works we will focus on finding an 
optimal stop criterion for our method and on integrating 
the constraints described in sub-section 2.2 in one 
powerful anisotropic function (g). 
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