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ABSTRACT

Airborne laser scanner systems are based on the emitting /
recepting cycle of a laser beam mounted on the nadir of an
airplane. They provide 3D point clouds of the topography
within an altimetric accuracy of generally less than 10 cm.
The divergence of the emitted laser beam allows the record-
ing of at least two distance measurements for each transmitted
pulse. It is particularly interesting when surveying forest ar-
eas whereon both the top canopy and the ground are recorded
at once. The aim of the paper is to describe a methodology
for modelling the terrain from sparse laser ground points with
a dense altimetric surface, without using classical interpola-
tion algorithms. Our approach is based on the definition of an
energy function that manages the evolution of a terrain sur-
face in a Bayesian framework. The energy is designed as a
compromise between a data attraction term and a regulariza-
tion term. The minimum of this energy corresponds to the
final terrain surface. We show some conclusive results of the
retrieving of a realistic terrain.

Index Terms— Airborne lidar, digital terrainmodel, marko-
vian regularization, optimization

1. INTRODUCTION

Accuracy in mapping projects have never been as important
as today, especially when considering risk management (i.e.
floods) and surveying. Traditionally, photogrammetric tech-
niques provideDigital SurfaceModels (DSMs) calculated from
couple of aerial/satellite images in a stereoscopic context [1].
Digital Terrain Models (DTMs) can be derived from these
photogrammetric DSMs [2]. In case of a natural rural terrain,
vegetation often hides the true ground which is not always
visible on images. As a result, generated DTMs lack of accu-
racy and applications using DTMs (i.e. flood/tide predictions)
provide false conclusions.
Airborne laser systemsmay sort out these problems under cer-
tain conditions. These systems are based on the recording of
the time-of-flight distance between an emitted laser pulse and

its response after a reflection on the ground (figure 1). They
provide sets of tridimensional irregularly distributed points,
georeferenced with an integrated GPS/INS system within an
altimetric precision less than 10 cm[3]. Moreover, these sys-
tems can providemultiple returns for a single laser pulse which
corresponds to different measured altitudes. It is particularly
relevant when surveying vegetated areas where both the alti-
tude of the top of the canopy and the ground can be recorded
at once with accuracy. Nevertheless, dense vegetation inhibits
laser ground return signal. The terrain is then represented as
sparse 3D points as one can notice it on figure 2.

Fig. 1. Principles of Airborne laserscanning systems

We will focus this paper on the description of the terrain from
lidar data which have been previously filtered into ground and
off-ground points [4]. We used to representing the terrain as
an image,a DTM, where the intensity of each pixel is propor-
tional to the height. The problem becomes: how can we get a
dense image description of the terrain from a sparse 3D point
cloud. Even though the generation of altimetric data can al-
ways be considered as interpolation (resampling) processes,
the goal of this study is to provide a realistic topographic ter-
rain model without using traditional interpolation algorithms
(linear interpolation, kriging, inverse distance weighting ...).
These algorithms may generate artefacts or may generalize
the terrain relief. Such drawbacks can be avoided consider-
ing a deformable surface that takes into account recorded mi-
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Fig. 2. Projection of classificated ground lidar points (brown
points) onto an otho-rectified image.

crorelieves. From a coarse initial DTM, a very fine DTM will
be calculated.The process is ruled by the minimization of an
energy. The energy is designed as a compromise between a
data attraction term and a regularization term. The minimum
of this energy corresponds to the final terrain surface. We
therefore propose to use a Bayesian approach which provides
the means to incorporate prior knowledge in data analysis.
Having briefly presented the theoretical background of the
study, we will describe the algorithm, especially the definition
of an energy associated to the Bayesian model. The second
part is dedicated to the presentation of some results.

2. METHODOLOGY

2.1. Background

In a probabilistic framework, an image is a set S of sites s
where the grey level is a descriptor of each site. An image is
considered as a realisation of a random field X = (Xs)s∈N2 ,
where Xs is a random variable of values in Ecard(S) [5] . A
random field is therefore a measurable mapping X : Ω −→
Ecard(S) associated to a completemeasurable space (Ω,F ,P).
This model is described by the probability lawP(X = x) the
event x to be a realisation of X . As usual in image process-
ing, we will consider the particular Markov Random Fields
(MRF). In a MRF, the value of a site only depends of its local
environment through a neighbouring system V defined as [6]:{

s /∈ V(s)

∀r ∈ S\{s}, s ∈ V(r) ⇔ r ∈ V(s).
(1)

In case of a MRF, we have

∀x ∈ Ω, ∀s ∈ S,P(Xs = xs|Xr = xr, r ∈ S\{s})

=P(Xs = xs|Xr = xr, r ∈ Vs) (2)

The Hammersley-Clifford theorem argues the equivalence be-
tween a MRF and a Gibbs field. The a priori probability of a
random variableX can therefore be explicitly written as:

P(X = x) =
1

Z
e−U(x) (3)

where Z =
∑
x∈Ω

e−U(x) is a normalization constant and U an

energy function (which has the properties to be decomposed
into local energies) defined as:

U : Ω −→ R

x −→ U(x) =
∑
c∈C

Uc(x) (4)

We propose a Bayesian model for regularizing the terrain sur-
face in order to introduce a priori knowledge on the model.
The Bayes’s law, which relates a priori and conditional prob-
ability is defined as

P(X |D) =
P(D|X)P(X)

P(D)
∝ P(D|X)P(X) (5)

The Bayesian model is related to the inverse problem of how
retrieving the best configuration x̂ knowing observations D.
We look for the maximum a posteriori (MAP) defined as:

x̂MAP = argmax
x∈Ω

P(X = x|D) (6)

that can be written as

x̂MAP = argmin
x∈Ω

(
−log

(
P(D|X = x)

)
−log

(
P(X = x)

))
(7)

Under the markovian hypothesis, solving equation 7 is equiv-
alent to globally minimize an energy E , sum of a data term Ed

and of a regularization term Er μ ∈ R

x̂MAP = argmin
x∈Ω

(Ed + μEr︸ ︷︷ ︸
E

) (8)

2.2. Definition of the energy

2.2.1. The data term

The data term depends on the distance between the terrain
surface and the data D = {ds/s ∈ S′} (S′ ⊂ S). D is pre-
calculated by projecting “terrain” lidar points onto a regular
grid of the same resolution as the final DTM. This distance
has to be minimal so that the final DTM should be as near as
possible from laser measurements of the ground. We there-
fore define Ed as:

Ed(D = ds|X = xs) =

{
(ds − xs)

2 if s ∈ S′,

0 if not.
(9)
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2.2.2. The regularization term

The regularization term aims to compensate the effect of the
data term so that the final surface should not be too noisy. This
term depends on the intrinsic geometry of the surface [7].
Let h be the surface defined as:

h : R
2 −→ R

3

(x, y) −→ (x, y, z = h(x, y))

A second order Taylor developpement at point u0 = (x0, y0)
with u = [x y]T can be written

h(u) = h(u0) + (u− u0).∇u0
h︸ ︷︷ ︸

Π0(u)

+
1

2
(u − u0)H(u− u0)T + o(||(u − u0)||2)

(10)

whereΠ0 is the tangent plane to h inu0 andH =

(
∂2h

∂x2

∂2h
∂x∂y

∂2h
∂x∂y

∂2h

∂y2

)
the Hessian matrix of h. This matrix describes the local prop-
erties of the surface curvature.
We define the regularization term as a function of the trace
and the determinant of the Hessian matrix. The trace de-
scribes the local convexity of the surface while the determi-
nant is linked to the shape of the surface with regard to its
tangent plane (parabolic, elliptic, hyperbolic). We therefore
define Er as:

Er = α1tr(H)2 − α2det(H) α1, α2 ∈ R
+ (11)

=
α2

2

((
∂2h

∂x2

)2

+

(
∂2h

∂y2

)2)
+ α2

(
∂2h

∂x∂y

)2

+ (α1 −
α2

2
)

(
∂2h

∂x2
+

∂2h

∂y2

)2

(12)

This energy is designed so that its convexity should be man-
aged for optimization purposes. Indeed, in case of estimat-
ing a fine terrain surface, there are not any forbidden natural
shapes. A repulsive term is therefore not appropriate. If the
constrains

α2 ≥ 0 and α1 ≥
α2

2
(13)

are applied, the energy becomes convex. Derivatives are cal-
culated using the finite difference approximation. A steepest
gradient algorithm has been used to solve the optimization
problem.

3. RESULTS

3.1. Practical remarks

The lidar point cloud used in this study has a spatial density
of ∼ 25 pt/m2. Last lidar pulses have been processed since
terrain points were only of interest.

An initial coarse resolutionDTM (3 m) is first calculated from
the classification algorithm [4]. The algorithm presented here
works at any resolution and provides fine resolution terrain
surfaces. As a result, the coarse DTM is resampled with a
PPV interpolator. The final resolution depends both on the
mean point density and on the spatial distribution of ground
points. A compromise has to be found between the regularity
of the terrain and the description of microrelieves. Here, we
set the final resolution to 0.5 m. Finally, the resampled DTM
is smoothed with a Gaussian filter to produce a differentiable
surface.
Depending on the surveying configurations, real terrain does
not always fit a dense square image representation. Empty
pixels (black pixels in figure 3(b)) have no altimetric infor-
mation. We therefore produce a mask of eligible sites (DTM
points) whereon the regularization is applied.

3.2. Discussion

The algorithm we have developed provides successful results
with regard to the aim of the study. As one can notice on
figure 3(a), the coarse DTM represents low frequencies of the
terrain. After applying the regularization algorithm onto a
resampled surface, micro-relieves appear in the description of
the terrain (figure 3(b)).

(a) Initial 3 m resolution DTM.

(b) Final 0.5 m resolution DTM.

Fig. 3. DTM before and after the regularization step. Images
are coded from green to brown with increasing altitudes. The
area is approximated 540 m× 300 m.

This approach clearly takes benefit of the potential of lidar
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scanning data for deriving very fine DTMs. The Bayesian for-
mulation is flexible enough to integrate external constraints.
We think of integrating break lines that are often underesti-
mated. Indeed, the defined energy has been constructed based
on geometrical considerations and has been tested on different
landscapes with success. Other formulations may be derived
based on a morphological knowledge of the real terrain. We
have noticed that, under the constrained equation 13, param-
eters α1 and α2 have a very low influence on the final shape.

As to the optimization step, a steepest gradient method ap-
pears sufficient since the energy has been designed to be con-
vex. The convergence is fast considering the set of eligible
sites whereon the regularization step is fully defined.

We show on figure 4 some profiles of the surface terrain evo-
lution. The initial coarse DTM (light grey curve) generalizes
the terrain. Nevertheless, the description of the terrain be-
comes progressively detailed until fitting laser points (black
dots). The regularization is performed in 2D that can explain
the final shape (bump) around at 22.5 m.

Fig. 4. Different profiles of a DTM at different iteration steps
of the regularization algorithm. Laser ground points are rep-
resented as black dots.

In this study, the final DTM has not been validated by exter-
nal measurements. It is admitted that laser scanning data are
globally accurate within 0.10 m in altimetry and < 0.40 m in
planimetry [8]. Nevertheless, it appears, in some local areas,
that underground points which are not natural microrelieves,
remain. These outliers come from erroneous time measure-
ments of the lidar system. The surface is then attracted by
these points. We planed to filter these points out. The future
work consists in validating the DTM with some field measur-
ments and to compare our approach to other interpolators.

4. CONCLUSION AND FUTUREWORK

We have presented in this article a methodology for deriving
accurate DTMs from 3D topographic lidar data. The original-
ity of this study lies in the ability of calculating a dense and
realistic topographic surface without using classical interpo-
lation approaches. Based on a regularization process that in-
volves terrain points in a Bayesian framework, we showed
that we are able to retrieve accurate micro-relieves recorded
by the lidar system.
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