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ABSTRACT

To achieve good image quality for computed tomography
scans, it is important to accurately know the geometrical
relationship between the x-ray source, detector, and axis of
rotation. Conventional geometric calibration algorithms
generally require particular calibration phantoms, such as a
small pin or wire, which may not be practical for all scanner
types, particularly for large industrial scanners. This paper
presents an alternative framework to calibrate system
geometry from scans of arbitrary objects, without prior
knowledge of the object's form. This lessens physical
construction requirements, and permits post-scan geometric
calibration from any arbitrary scan data. Experimental
results show that central ray calibration using this approach
can give results accurate to 0.01 channels for low-noise
conditions, or 0.1-0.45 channels under higher noise levels.

Index Terms— Tomography, Calibration
1. INTRODUCTION

Computed Tomography (CT) scanning is a technique
wherein one projects X-rays through an object from many
different angles, then processes the resulting projection data
to form an image of the local linear attenuation coefficients
in a cross-section through the object. Such images can be
used to see structure, density variations, and changes in
material composition; hence CT has become a popular tool
for medical diagnosis, industrial non-destructive testing and
reverse engineering, and security inspection. Currently, the
most popular CT configuration is so-called third generation
CT, shown in Figure 1, where the source and detector are
fixed with respect to each other, rotating relative to the
object under study. The relative motion may be performed
by rotating the source and the detector in tandem, as with
typical medical geometries, or by rotating the object, as with
typical industrial geometries. Slice location is adjusted by
sliding along the Z-axis (parallel to the rotation axis), which
for medical geometries is typically horizontal, and for
industrial geometries is typically vertical — this motion is
relative and may be performed by sliding the object, or by
sliding the source and detector in unison.
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Fig. 1. Two types of third-generation scanners

For proper CT reconstruction, especially when the
end goal is dimensional measurement, it is important to
accurately know the relative position of each detector
channel with respect to the x-ray source and rotation axis.
For medical geometries, the rotation axis is fixed, and
alignment is generally fairly stable over time. For industrial
geometries, however, alignment may easily change as a
function of Z. Though one can calibrate alignment as a
function of Z, when the range of Z positions is large the
results can be inaccurate when using relatively flimsy
calibration objects such as pins or wires, which are typically
required by conventional calibration algorithms. Further,
particularly heavy objects may cause the scanner to flex,
causing alignment to change as a function of the scan object.

In this paper, a framework is proposed in which one
can measure alignment from scans of arbitrary objects by
maximizing the redundancy in complementary rays. This
allows the use of large rigid calibration objects which are
stable over large ranges of Z, and whose weight distribution
matches the object to be scanned. Furthermore, one can
calibrate from the same projection data that will be
reconstructed, eliminating both the need for the operator to
perform an extra calibration step, as well as the risk of the
alignment changing between the calibration and object scan.
Section 2 provides an overview of geometric calibration,
Section 3 describes the proposed framework, and Section 4
gives experimental results validating the proposed approach.

2. GEOMETRIC CALIBRATION

Figure 2 shows a third-generation CT geometry. There are
N detector channels, numbered O to N-I. The central ray
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(also referred to as iso-ray), is defined as the ray that passes
from the source through the rotation axis; it intersects the
detector at channel ¢ (called the central ray value), which in
general is non-integer. For an arbitrary channel number i, let
7 be its channel angle, defined as the angle between the
central ray and the ray from the source to that channel.

To perform geometric calibration, we must first
parameterize the geometry — specifically, let us parameterize
the angles j based on the known construction of the
detector, and denote the set of unknown parameters as ©.

One construction is equiangular detectors, where
channels are spaced with constant angular pitch Ay along

an arc focused on the source, and the angles are modeled as:
v, =Ayx(i—c)- ()
Another important case is equilinear detectors, where
channels are equally spaced along a flat line perpendicular to
the central ray, and the channel angles are modeled as
7, =tan”' (A;/x(i—c)) > (2)
where angular pitch is no longer constant, but Ay is the

local angular pitch, in radians, about the central ray.
For either of these equally spaced detectors, let's
use the term "c-ray calibration” to denote that Ay is known

ahead of time, and our goal is to measure

0-fc}. 3)
Similarly, let's use the term "cray-+pitch calibration" to
denote that neither ¢ nor Ay is known, and we measure

©={c,Ar} “)
Though we focus on c-ray and c-ray+pitch calibration in this
paper, the results may be straightforwardly extended to other

geometric types. For example, full angular calibration may
be performed by using

O={r}," )

i=0
Additionally, detectors comprised of discrete modules in a
polygonal or tiled configuration may be addressed by adding
a position parameter for each module, or by parameterizing
the gaps between modules.

3. CALIBRATION FROM COMPLEMENTARY RAYS

This section provides a general approach for finding any ®
from projection data of an arbitrary object. The basic idea is

to imagine a number of different hypothetical geometries,
calculate what patterns of redundancy we would expect to
see in the data for each geometry, then select the geometry
whose expected redundancy best matches the measured data.

Redundancy in complementary rays is well-known
and commonly exploited, such as in [1]. Let £ be the
rotation angle of the object relative to the source and
detector. As the object rotates, data is acquired for a large
number of different B values, perhaps covering exactly 360°.
One can see from Figure 3 that the path through the object
from the source to channel i at position £ should be identical
to the path from the source to some other channel i at some
second position S, where

V=7, (6)
and

By, =f +y. +x (7
where "=" means equal, modulus 2. We can rewrite (7) as

B =p+2y+m. (®)

Now let us denote our logged input projection data, after
standard corrections and normalizations (see [2] section
7.5.1), by P(i,k) where k is view number. Then for some ©,

let us define the complementary projection set as
0ot.t)2 P(y ' (=7). B (B +27,+7)) ()
where the inverse equations »'(-) and g7'(.) represent the

calculation of channel number from channel angle, and view
number from rotation angle, respectively. In general, both
inverse equations produce non-integer indices, so "Z&"
indicates that an interpolation step is required to produce Q
from P. This could be, for example, bilinear or cubic spline
interpolation, but in practice, truncated sinc interpolation is
far more robust to noise, for reasons described in [3]. Note
that both the forward and inverse y and g calculations

depend on O, hence its appearance as a subscript on Q.

If ® accurately describes the scanner geometry,
then the X-ray path covered in a datum P(i,k) should be
identical to the X-ray path covered by Qg(i,k). Thus, we
expect that for the true value of ®, then

P(i,k) = Qg (i, k) (10)
Furthermore, since there is a one-to-one mapping between
projection data and underlying images, and we know that the
underlying image is the same in both P and Q, then as long
as the underlying image is strong compared to the noise
level, we expect (10) to hold if and only if ® closely
describes the true geometry during the acquisition of P.

Due to noise and differences in scatter, beam shape,
detector response, etc., the equality in (10) will in general
not be exact. Therefore, calibration is performed by
minimizing some difference measure D,

®*=argngnD(P;Q®)~ (11)

This is in essence a registration problem, and suitable
choices for D include standard distance measures such as
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mean square error (MSE) and mean absolute error, as well
as the negative of similarity measures such as mutual
information (MI) and normalized mutual information (NMI)
[4]. In principle, geometric calibration could work for any
of these measures. In our experiments, however, MI and
NMI proved to be poor choices due to slow speed, a
nuisance parameter for histogram bin size, and no real
benefit since P and Q have similar statistics. The fastest and
most accurate results were achieved using MSE:

D5t (P:0) = 3 [P, k) =00 (i, )|

To perform the search in (11), one can choose from
a number of off-the-shelf numerical optimization methods
such as those in [5]. Gradient-based methods which work by
evaluating v oD can offer quick convergence, but the exact

(12)

updates are dependent on the choices of interpolation
method and difference measure — for some choices, the
updates can become rather intractable. Search methods
requiring only evaluations of D, on the other hand, allow one
to easily adjust the interpolation method or difference
measure without modifying the search updates, and can still
provide good speed. In experiments, a successive parabolic
approximation algorithm[6] was able to perform c-ray
measurement to within 0.1 channels using typically 6-15
evaluations of D. Different search methods in principle vary
in their speed to convergence and region of convergence, but
not in their accuracy — as long as they actually do converge
to the right neighborhood, any competent optimization
method will return the same result to within an arbitrarily
small tolerance. Therefore the experimental results in

Fig. 6. Reconstruction of Fig 4 using ¢, Ay,

Fig. 7. Profiles of line-pair gauge using various
geometry parameters for reconstruction

Section 4 will focus on the quality of the optima found, with
little discussion of the specifics of the search algorithm.

4. EXPERIMENTAL RESULTS

In this Section, experimental results are given using the
proposed framework. Section 4.1 demonstrates the method
on real scan data, while Section 4.2 gives results for c-ray
calibration accuracy and noise-immunity on simulated data.
Calibration was performed using the methods of [6]
with a specified accuracy of 0.0001 rays for ¢, and 0.01%
for Ay. Experience dictates that for high-quality CT images,
as a rough rule of thumb, ¢ should be accurate to within 0.1-
0.25 rays and Ay should be accurate to 0.1-1%. The tighter
tolerances used in this paper are for academic understanding.

4.1. Calibration on Real Data

The first validation was performed on a custom CT scanner
using a 6MV linear accelerator source. The detector was
constructed with channels with 0.75mm apertures, arranged
at a 1.5mm pitch on an arc focused on the source with a
focal length of approximately 3.05m, giving a nominal value
of AYyom = 0.028178°. Figure 4 shows projection data from
a scan of a composite test part with several line-pair gauges
placed around it. Figure 5 shows D as a function of c,
keeping Ay fixed at Ay,om. C-ray calibration is performed by
finding the minimum of this function, which is at
¢;'=500.3535. C-ray-+pitch calibration then found the values
¢,=500.3526 and Ay, =0.028355. Figure 6 shows the
reconstruction using these values. To evaluate the obtained
results, the above reconstruction was compared with
reconstructions using nearby values, ;""" = ¢," + 0.4 rays,
and Ayzhi"" = Ay; + 10%. If our calibration worked, we
would expect the reconstructions using the suboptimal
parameters to be blurrier than the reconstructions using
(cz*,Ayz*). Figure 7 shows the same profile through targeted
reconstructions of one of the line-pair gauges, using the
indicated parameters. One can see that (¢, ,Ay,”) gives a
larger peak-to-peak amplitude than the nearby parameters,
which evidently cause more blur in the image. Thus it
appears that the proposed framework produces parameters

Iv-131



Fig. 8. Simulated projection data Fig. 9. Reconstruction of Fig. 8

which are locally (and presumably globally) optimal. Note
that it took a hefty perturbation of 10% on Ay to see this
increase in Dblur. Smaller perturbations produced a
negligible blur, but small errors in Ay can be observed to
produce slight large-scale geometric warpings of the image.

4.2. Calibration on Synthetic Data

The next test was to simulate known geometry values, then
test the algorithm's ability to recover these values in the
presence of noise. The simulated geometry had 1024
detector channels with 0.8mm apertures arranged at a Imm
pitch along an arc with focal length 1300mm, focused on an
x-ray source with a Imm spot size. The rotation axis was
735 mm in front of the source, and the object was an
80mmx50mm box with a 10mm hole in its center. The box
had attenuation equivalent to Aluminum for a 300keV
monochromatic beam, was placed with its center 36mm
away from the rotation axis, and was scanned using 1000
views per revolution. Data sets were generated for several
different flux amounts, adding Gaussian noise to the pre-
corrected projection data in order to model photon noise.
For each flux amount, 50 different sets of projection data
were generated, each with a different simulated central-ray
value cg,, the values ranging from 506 to 510. As an
example, Figure 8 shows the projection data for 1000
photons per channel simulated with c;,=507.1429, and
Figure 9 shows the corresponding reconstruction. For this
same data set, the proposed c-ray calibration returns
¢"=507.2024, which agrees quite well with the simulated
value. Table 1 shows the measurement accuracy |c*-cs,4,,,\ for
all the different flux amounts — the indicated percentiles
summarize the range of measurement errors seen over the 50
trials for each flux amount. We see that for high SNR (>10*
photons per channel), we in every case measured c to within
1/100"™ of a channel — far better than we need. For a
moderate SNR (10° photons per channel), we can measure ¢
to a little worse than 1/10™ of a channel, still quite adequate
for most imaging applications. For low SNR (100 photons
per channel), the calibration result was always within %2 a
channel, but only within our ideal % channel half of the time.

5. CONCLUSIONS AND FUTURE DIRECTIONS

The proposed framework has a number of practical
advantages in that it allows calibration from arbitrary

Signal Central Ray Measurement Error

through air (listed by percentile)

(each channel)
photons | SNR 0% 25% 50% 75% 100%

(best) (median) (worst)

10° 316 0.000109 0.000994 | 0.00365 0.00578 | 0.00967
10* 100 0.0000637 | 0.00166 0.00421 0.0053 0.00979
10° 31.6 0.000766 0.0356 0.0745 0.106 0.135
10 10 0.000645 0.0896 0.244 0.337 0.449

Table 1. Central ray measurement accuracy from simulated noisy data

objects, including calibration from the same scan data that
will be fed to reconstruction. On real data, it found
parameters that empirically seem to minimize reconstruction
blur, and on synthetic data, it gave excellent results on high-
SNR data, and still gave good results on noisy data. A
future study could similarly quantify robustness to errors in
the measurement of P, which occur due to mechanical
practicalities. In this paper, we focused on global geometry
parameters which affect all channel angles, though in the
future, the proposed framework could be adapted to also
include local parameters like polygonal module positions or
even full-angle calibration. One major limitation, however,
is that since the method relies on complementary rays, for a
highly asymmetric detector configuration (such as [7]), local
parameters may only be measured for those few channels
whose complement actually exists. Nevertheless, the ability
to calibrate geometry from scans of unknown objects,
successfully demonstrated here, greatly simplifies the
mechanical requirements for geometric CT calibration.
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