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ABSTRACT

Discrete tomography (DT) is concerned with the tomo-
graphic reconstruction of images that consist of only a small
number of gray levels. DT reconstruction problems are usu-
ally underdetermined. Therefore, incorporation of heuristic
rules to guide the reconstruction algorithm towards an opti-
mal as well as intuitive solution would be valuable.

In this paper, we introduce DART: a new, heuristic DT al-
gorithm that is based on an iterative algebraic reconstruction
method. Starting from a continuous reconstruction, a discrete
image is reconstructed by consistent updating of border pix-
els. Using simulation experiments, it is shown that the DART
algorithm is capable of computing high quality reconstruc-
tions from substantially fewer projections than required for
conventional continuous tomography.

Index Terms— Discrete tomography, algebraic reconstruc-

tion technique, image reconstruction

1. INTRODUCTION

Discrete tomography (DT) is concerned with the problem of
recovering images from their projections where the images
are assumed to consist of a small number of gray values only
[1]. Potential benefits of DT are an increase of the recon-
struction quality and a reduction of the required number of
projection images. The DT reconstruction problem, however,
is generally underdetermined and the number of possible so-
lutions can be substantial. Therefore, incorporation of ad-
ditional rules to guide the reconstruction process towards an
optimal as well as intuitive solution would be valuable.

Several reconstruction algorithms for DT have been pro-
posed, most of which are limited to the reconstruction of bi-
nary images (i.e., black-and-white) [2—4].

In this paper, we propose a new, heuristic DT algorithm
that is based on an iterative algebraic reconstruction algo-
rithm. The method will be referred to as DART (Discrete
Algebraic Reconstruction Technique). After introducing ba-
sic notations and concepts in Section 2.1, an overview of the
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DART algorithm is given in Section 2.2, which will be elab-
orated on in Section 2.3. Finally, in Section 3, simulation
results are presented and discussed.

2. METHOD

2.1. Notation and concepts

For the sake of simplicity, we assume a two-dimensional (2D)
parallel projection geometry (see Figure 1), although the DART
algorithm can be easily extended to other transmission tomog-
raphy setups.

The unknown object that we want to reconstruct is repre-
sented by a gray-scale image, which is considered as a func-
tion f : R? — R with bounded support. The projection func-
tion Py : R — R of f for an angle 6 is defined as

+oo
ng(t)://f(a:,y)é(xcos@+ysin9—t)dacdy, (1)

with §(.) denoting the Dirac delta function. The values Py ¢(t)
are often called /ine projections. The reconstruction problem
consists of recovering the image f from its projection func-
tions along a set of angles.

The reconstruction is computed on a rectangular pixel ar-
ray of width w and height ~. Hence, the total number of pixels
in the reconstruction is given by n = wh. Let d be the to-
tal number of available projections, corresponding to angles
{61,...,04}. For each projection angle, we assume that the
projection of the unknown original image was measured by
an array of k equally spaced detector cells. The total number
of measurement values is denoted by m = kd.

The reconstruction problem can be formulated as a system
of linear equations (see, e.g., Chapter 7 of [5]):

Wax =p. 2)

The mxn matrix W is called the projection matrix. The en-
tries of the n x 1 column vector & correspond to the pixel
values of the reconstruction. The m x 1 column vector p con-
tains the measured line projections.

ICIP 2007



Fig. 1. Parallel projection geometry

There are a variety of algebraic reconstruction methods
for continuous tomography (ART, SART, SIRT, etc.). We re-
fer to [5] for an overview of algebraic reconstruction methods.
The DART algorithm can be used in conjunction with each of
these algorithms. In the context of this paper, we refer to al-
gebraic reconstruction method (ARM) as a specific iterative
reconstruction algorithm. In each ARM iteration, all projec-
tions are enumerated in random order, each time updating the
current reconstruction. Define S, = {1+(¢—1)k, ..., 1+q¢k}
forq = 1,...,d. The set Sk contains the indices of the pro-
jection matrix rows that correspond to projection gq. Let =
be the current reconstruction after a certain number of update
steps have been performed. From x, the new reconstruction
x’, based on projection ¢, is computed according to

1 wij(pi — [Wx);)
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where w;; is the ij*" element of W. We use the term ARM
iteration to denote a sequence of d such update steps, applied
for each of the projections in random order.

Besides the projection data, the DART algorithm requires
as input the set of gray levels in the reconstruction, which we
assume to be known in advance. If ¢ is the number of gray
levels in the image, then the set of gray levels will be denoted

byby R={p1,...,pe}.

2.2. Algorithm overview

Before giving a concise description of the operations performed
by DART, we will first give a brief overview of the algorith-
mic ideas.

Suppose that we want to reconstruct the binary image shown
in Figure 2(a) from only 12 projections. Figure 2(b) shows the
ARM reconstruction after ten iterations. From the ARM re-
construction, it is difficult to decide where the edges of the
object are exactly. Yet, the thresholded reconstruction in Fig-
ure 2(c) shows that pixels of the interior of the object that are
not too close to the boundary are assigned the correct gray
level in the thresholded image. The same holds for pixels

(a) original image  (b) ARM reconstruction (c) thresholded rec.

(e) DART update

(d) boundary pixels (f) after DART iter.
Fig. 2. Reconstructing a phantom. The images indicate the
various steps of the DART algorithm.

in the background region that are far away from the object
boundary. Let B be the boundary of the object in the thresh-
olded image, which is defined as the set of all pixels that are
adjacent to at least one pixel having a different gray level (cfr.
Figure 2(d)). We now move back to the original gray level
ARM reconstruction. All pixels that are not in B are assigned
their thresholded value, either black or white. Next, several
ARM iterations are performed for the pixels in B only. In
this way, we significantly reduce the number of variables in
the linear equation system (2), while the number of equations
remains the same. Figure 2(e) shows the relative change of the
image pixels after one ARM iteration of the boundary pixels,
where gray denotes no change. In regions of the boundary B
where too many white pixels were assigned the wrong gray
value, the surrounding boundary pixels have strongly nega-
tive (dark) pixel values, to compensate. The opposite occurs
at parts of the boundary where the extent of the background
has been overestimated in the first thresholded ARM recon-
struction. In this way, the values of the boundary pixels indi-
cate how the boundary should be adapted in a new estimate
of the object. In the ARM step, each of the boundary pixels
is allowed to vary independently, which may result in large
local variations of the pixel values. To regularize the recon-
struction algorithm, the boundary pixels are locally smoothed
after applying ARM. Figure 2(f) shows the result of this fil-
tering operation. Subsequently, the resulting image is again
thresholded and each of the steps that we just described is
repeated iteratively.

Figure 3 shows an overview of the DART algorithm. In
the next subsections, we will describe each of the steps in
more detail.
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Compute a start reconstruction «° using ARM;
t:=0;
while (stop criterion is not met) do
begin
ti=t+1

t—l),

s

Compute the segmented image s* = r(x
Compute the set I* of non-boundary pixels of s*;

. —1 .
Compute the image y* from " and s, setting
yl = stific I"and y! := x!~" otherwise;

Using y* as the start solution, compute the ARM reconstruction
a', while keeping the pixels in I fixed;

Apply a smoothing operation to the pixels that are not in [;

end

Fig. 3. Basic steps of the DART algorithm.

2.3. Algorithm description

The first approximate reconstruction z° is computed using

the continuous ARM algorithm. For all DT experiments in
Section 3 we used three ARM iterations.

Each time a (partially) continuous reconstruction has been
computed, it is segmented to obtain an image s’ that has only
gray levels from the set R = {p1,...,pe}. For all exper-
iments in this paper we used global thresholding with fixed

thresholds to perform this segmentation. For¢ =1,...,/—1,
define
Pi + pit1
T, — 72 .

Define the threshold functionr : R — R as

P1 (1} < 7'1)
=4 2 mErsm o)
pe (T¢—1 < v).

As a shorthand notation we also define the threshold func-
tion of an image « € R"™: r(x) = (r(x1) r(xn))T .

After the segmented reconstruction s = r(x'~!) has
been computed, the set I' of non-boundary pixels is com-
puted from the segmented image. A pixel s¢ is called a non-
boundary pixel if all pixels from its 8-connected neighbor-
hood have the same gray level in st. The remaining set of
pixels, B, are called the boundary pixels.

Then, the image y? is computed from x*~! and s?, setting
yt = stifie Iandy! := 2!~ 1 ifi € B.

Consider the system of linear equations
| | 1

wq e wy,
| | Ty

D, 4

where w; denotes the ith column vector of W. We now de-
fine the operation of fixing a variable z; at value v; € R. It
transforms the system (4) into the new system

Tl
| I '\ | .
i—1

w; - Wi—1 Wil - Wy ) = P~ vw;.
Ti4+1
| | | |
Tn

)

The new system has the same number of equations as the orig-
inal system, whereas the number of variables is decreased by
one.

Using the image y* as the start solution, the new recon-
struction ! is computed by applying a single ARM iteration,
keeping all non-boundary pixels fixed.

Finally, a local smoothening operator is applied to the pix-
els in the set BY, setting ¢ := 0.72! + 0.3b, where b denotes
the average gray value in the 8-neighborhood of pixel :.

To determine when the algorithm should terminate, we
use the total projection error E : R™ — R, defined as

B(z) = [Wa - pls.

The algorithm is terminated after the total projection error of
the best reconstruction found so far has not decreased during
the last 10 iterations. The termination check is computation-
ally expensive by itself, and is therefore only performed after
each multiple of 10 main loop iterations. We also used a fixed
upper bound of 500 main loop iterations, which was never
reached in the experiments for this paper.

3. EXPERIMENTAL RESULTS

We implemented the DART algorithm in C++, using the gcc
compiler. All experiments were performed on an Intel E6700
PC, using a single CPU core.

The top row of Figure 4 shows the three phantoms that
were used for the reconstruction experiments. All three phan-
toms have size 512x512 pixels. The phantom shown in Fig-
ure 4(a), called simple is a relatively simple shape without any
holes, although it is not convex. The second phantom, shown
in Figure 4(b), called cylinders, represents a cross-section of
a cylinder head from a motor block. It is a far more com-
plex shape than the first phantom. The third phantom, shown
in Figure 4(c) is the well-known Shepp-Logan phantom [5],
which we use here to demonstrate that the DART algorithm
can be used effectively when the reconstruction contains more
than two gray levels.

Table 1 shows reconstruction results of the DART algo-
rithm, using a varying number of projections. In all cases,
the d projection angles are equally spaced between 0 and 180
degrees. The column “#DART iters” contains the number of
times the main DART loop was executed. The column “pixel
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error” indicates the fraction of pixels for which the recon-
struction is different from the phantom image. The last col-
umn shows the total running time.

Note that we use a different number of projections for
each phantom. The results for the two binary phantoms show
that there is a sharp lower bound on the number of projections
that are required for a reconstruction of high quality. For ex-
ample, for the cylinders phantom, using 9 projections results
in a pixel error of 0.83, whereas using 10 or more projections
suddenly makes the pixel error drop below 0.002. For each
of the phantoms we experimentally determined the minimal
number of required projections, indicated by a bold font in
Table 1.

The second row of Figure 4 shows ARM reconstruction of
the three phantoms, after ten iterations. The number of pro-
jections used in Figure 4(d), 4(e), and 4(f) are 5, 10, and 18,
respectively. Finally, the last row of Figure 4 shows DART
reconstructions of the phantom images. The DART recon-
structions are based on the same number of projections as the
ARM reconstructions in the middle row.

LA

(b) Cylinders

(a) Simple

(c) Shepp-Logan

(d) ARM: 5 proj. (e) ARM: 10 proj. (f) ARM: 18 proj.

AL

(g) DART: 5 proj. (h) DART: 10 proj. (i) DART: 18 proj.

Fig. 4. (a-c): original phantom images; (d-f): ARM recon-
structions; (g-1): DART reconstructions.

The results show that for each of the phantoms, the DART
algorithm is capable of computing an accurate reconstruction
from a significantly smaller number of projections than re-
quired by the ARM algorithm to obtain similar quality. To the
best of our knowledge, there are currently no DT reconstruc-
tion results for images larger than 256256 in the literature.

phantom d | #DART | pixel error | running time

iters (sec.)

4 120 0.03557 8.7

Simple 5 110 0.00042 9.4

6 90 0.00026 8.6

9 130 0.08303 18.7

Cylinders | 10 110 0.00175 17.4
11 120 0.00167 20.5

12 110 0.14213 22.5

Shepp- 15 60 0.08440 15.3
Logan 18 100 0.02567 29.6
21 80 0.02355 27.4

Table 1. Experimental results for the three phantoms, using
perfect projection data

Even for the phantom images of size 512x512, the DART al-
gorithm required less than half a minute computation time in
all cases. An interesting question, which we consider to be
out of the scope of this paper, is how the minimal number of
required projections can be determined a priori.

4. CONCLUSIONS

We have presented a new iterative algebraic reconstruction
algorithm for discrete tomography, called DART. The DART
algorithm combines the efficiency of iterative algebraic meth-
ods from continuous tomography with the power of discrete
tomography to compute accurate reconstructions from rela-
tively few projections.

Our experimental results demonstrate that the DART al-
gorithm is capable of computing reconstructions of very high
quality from a small number of projections. The algorithm
is very effective for binary images, but it can also be used to
reconstruct images that contain more than two gray levels.
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