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ABSTRACT

Temporal basis functions have been found to be effective for
regularizing the time-varying image activities in dynamic emis-
sion tomography. By modelling the tracer distribution func-
tion at individual pixels as a linear combination of a set of
basis functions, the reconstruction problem becomes that of
estimating the weights of the basis functions. In this work, we
explore the use of temporally adaptive regularization in the
basis function domain, where spatial smoothing is enforced
in an adaptive fashion according to the time-varying data sta-
tistics. In our experiments the proposed method was demon-
strated using simulated Tc99m-Teboroxime SPECT imaging
with the gated mathematical cardiac-torso (gMCAT) phan-
tom. Our results show that the proposed approach can lead
to more accurate reconstruction of the time activities, which
is important for differentiation between a perfusion defect and
the normal myocardium.

Index Terms— Dynamic reconstruction, emission tomog-
raphy, temporal basis functions, adaptive regularization

1. INTRODUCTION
Dynamic imaging with emission tomography usually deals
with reconstruction of a series of image frames during the
course of data acquisition, which are useful for characteriz-
ing the time-varying tracer distribution within the body. Due
to the limited data counts, there exists a trade-off between
temporal resolution and imaging noise in the reconstructed
frames. This is particularly serious in SPECT where the avail-
able projection data may not even be complete for reconstruc-
tion at any time instance.
In recent years several reconstruction methods have been

developed to deal with these challenges, where temporal basis
functions are found to be effective for regularizing the time
activities at individual pixels. By modelling the tracer dis-
tribution function as a linear combination of a set of basis
functions, the reconstruction problem simply becomes that of
estimating the weights of the basis functions. For example,
in [1] exponential functions are used for reconstruction from

This work was supported by the National Institutes of Health under grant
HL65425.

list mode PET data. In [2]–[4] pre-defined B-spline basis
functions are used. In [5], [6] the basis functions are estimated
from the data by using the Karhunen-Loève (KL) transform.
Alternatively, in [7], [8] the temporal activities of the tracer
are restricted to only four types: constant, increasing only,
decreasing only, or first increasing then decreasing.
In our previous work [9], [10], we applied B-spline basis

functions for reconstruction of dynamic cardiac gated SPECT.
In a gated acquisition, the data counts are further divided into
a number of gate intervals. Thus, the imaging noise will
be even more pronounced. Owing to the elevated noise in
this problem, we introduced a regularization prior to impose
additional spatial smoothing on the reconstructed weights of
the B-splines. This was found to be effective for further noise
reduction.
In [9], [10], the weights of the B-splines were treated in

a uniform fashion in the smoothing prior. In this paper, we
extend this work by refining this prior so that spatial smooth-
ing will be imposed in an adaptive fashion in the basis func-
tion domain according to the time-varying data statistics. In
our experiments we demonstrated the proposed method using
simulated cardiac SPECT. However, our method is general
and should be equally applicable to other dynamic imaging
modalities such as PET.
We note that in the literature there also exists an alterna-

tive reconstruction approach in dynamic imaging, which aims
to reconstruct kinetic parameters directly from the projection
data [11]–[14]. In this paper we focus on reconstruction of
dynamic images. The rest of the paper is organized as fol-
lows: in Section 2 we describe the dynamic imaging model; in
Section 3 we present our regularized reconstruction method.
Evaluation study and results are given in Section 4, and con-
clusions are given in Section 5.

2. DYNAMIC IMAGING MODEL
In dynamic imaging, the tracer distribution is reconstructed
by binning the acquired data acquisition over a series of time
intervals. Assume that a total of S time intervals (i.e., frames)
are used. The imaging model can be written as:

E[gt] = Htft, t = 1, . . . , S (1)
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where gt, Ht, and ft are the projection data, the system ma-
trix, and the tracer distribution, respectively, during binning
interval t, E[·] is the expectation operator. AssumingM bins
in the detector, andN pixels for ft, then gt is anM×1 vector,
Ht is anM × N matrix, and ft is an N × 1 vector.
In (1) the matrix Ht is time-varying so that it can accom-

modate the case of a rotation gamma camera in SPECT. In
a PET system, however, Ht is stationary, i.e. H1 = H2 =
· · · = HS . For convenience, letH = diag [H1,H2, . . . , HS ],
g =

[
gT
1 , gT

2 , . . . , gT
S

]T and f =
[
fT
1 , fT

2 , . . . , fT
S

]T . Then
(1) can be rewritten in a compact form as

E[g] = Hf (2)

Our goal is to reconstruct the image frames f from the projec-
tion data g.
While it might be possible to apply a traditional recon-

struction technique to solve (2) in a frame-by-frame fashion,
the reconstruction results are expected to be very noisy be-
cause of the reduced data counts for each frame. Moreover,
in a slow rotation SPECT system the projection data are far
from being complete for reconstruction of each frame, i.e.
M � N . To deal with these problems, below we introduce
regularization on the dynamic images to compensate for defi-
cient data counts.

3. REGULARIZED DYNAMIC RECONSTRUCTION
3.1. Imaging model using basis functions
In this paper we model the dynamic behavior of each pixel as
a linear combination of a set of nonnegative basis functions
as follows

ft(j) =
K∑

k=1

wk(j)bkt, t = 1, . . . , S; j = 1, . . . , N (3)

where ft(j) is the jth pixel of frame ft, bkt denotes the value
of the kth basis function at time t, and wk(j) denotes its
corresponding weight at pixel j. With the basis functions
pre-defined, the time activity function at each pixel is now
determined by their corresponding weights. In practice, K
is typically much smaller than S. Thus, the model in (3)
can provide a much more compact representation (hence less
storage) of the dynamic images.
To simplify the notation, let wk = [wk(1), . . . , wk(N)]T ,

i.e., a vector consisting of the weights at all image pixels
corresponding to the kth basis function. Moreover, let w =[
wT

1 , . . . ,wT
K

]T , which is the entire collection of unknown
weights for all basis functions.
Define

B =

⎡

⎢
⎢
⎢
⎣

b11 b21 · · · bK1

b12 b22 · · · bK2

...
...

. . .
...

b1S b2S · · · bKS

⎤

⎥
⎥
⎥
⎦
⊗ I

where ⊗ denotes the Kronecker product, and I is the N × N
identity matrix. Then, from (3) the dynamic images f can be
written as

f = Bw (4)

Upon substitution of (4) into the the imaging model in (2), we
get

E[g] = HBw = HBw (5)

where HB ≡ HB, which is the system matrix expressed in
terms of the unknown weights.
In emission tomography, the tracer distribution is non-

negative. Thus, one can further impose a constraint that the
elements of w are nonnegative [15].

3.2. Regularized maximum-likelihood criterion
Instead solving for f , we determinew from (6) using regular-
ized maximum-likelihood (ML) estimation, i.e. maximum a
posteriori (MAP), as

ŵ = arg max
w

[log p(g;w) + log p(w)], subject tow ≥ 0
(6)

where p(g;w) is the likelihood function of the data parame-
terized by w, and p(w) is a prior distribution onw.
From above, it can be seen that the problem of estimating

the unknown weights w becomes essentially the same as that
in traditional image reconstruction, and thus, can be solved by
using a traditional MAP reconstruction algorithm. Once w is
determined, f can then be obtained through the interpolation
in (4).
In this study, we used the modified block sequential reg-

ularized expectation-maximization (BSREM) algorithm [15]
to solve the dynamic reconstruction problem in (6). The de-
tails of this reconstruction algorithm can be found in [15].

3.3. Adaptive temporal regularization
We use a Gibbs prior for w

p(w) =
1
Z

exp(−βU(w)) (7)

where Z is a normalization constant, β is a scaling parame-
ter (controlling the strength of the regularization), and U(w)
is an energy function enforcing the desired property on the
reconstruction.
In this work, we explore a new form of the prior p(w) by

exploiting the time-varying statistics of the data. Specifically,
we define

U(w) =
S∑

t=1

αt

N∑

j=1

∑

i∈ℵj

[ft(j) − ft(i)]2 (8)

where ℵj is the unit-distance neighborhood around pixel j,
and αt is a scaling parameter. The term U(w) is used to en-
force local smoothness among neighboring pixels in the same
frame. The factor αt is introduced such that the smoothness
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is time-varying (i.e., temporally adaptive) according to the
image temporal activities.
Substituting the linear model (3) into the energy function

in (8) and upon some algebraic manipulation, we get

U(w) =
N∑

j=1

∑

i∈ℵj

K∑

k=1

K∑

k′=1

ckk′(wk(j)−wk(i))(wk′(j)−wk′(i))

(9)
where

ckk′ ≡
S∑

t=1

αtbktbk′t (10)

It is interesting to note that the energy function in (9) can
be viewed as a more general form of the prior in our previous
work [9], where the following spatial energy function was
used:

U(w) =
K∑

k=1

N∑

j=1

∑

i∈ℵj

[wk(j) − wk(i)]2 (11)

In (11) all weights of the different basis functions con-
tribute in an equal fashion to the energy function. However,
in (9) the weights of the different basis functions are weighted
by the cross-correlation between the basis functions. In par-
ticular, a weight whose basis function has a larger temporal
distribution will have a larger impact on the energy function.
Thus, the weightsw will be regularized in an adaptive fashion
in the resulting prior.
For convenience, the prior corresponding to (11) will be

subsequently referred to as the Form I prior, and that corre-
sponding to (9) will be referred to as the Form II prior.

4. EVALUATION STUDY

4.1. Methods
To demonstrate the proposed reconstruction approach, we used
the gated mathematical cardiac-torso (gMCAT) D1.01 phan-
tom [16] and simulated SPECT acquisition using Tc99m la-
beled Teboroxime as the imaging agent. Our experiments
were based on a single slice of the phantom of the first gate.
In addition, a simulated defect was introduced in the my-
ocardium. Both the phantom and the time activity curves
(TACs) are shown in Fig. 1. As can be seen, the defect has a
slower uptake and washout than the healthy myocardium.
In our simulation, a triple-head camera system was used,

and 80 rotation stops covering a total of 480◦ by each head
with 64 projection bins at each stop were used during 12 min
data acquisition. The field of view was 40.5 cm. Poisson
noise at the count level of total 71,500 counts was introduced.
The system had an distance-dependent blur of approximately
13 mm full width at half-maximum (FWHM) at the center.
No attenuation and scatter was used.
In this study, we used six cubic B-spline basis functions

with the knot placement at [0, 0, 0, 0, 0.5, 1.5, 12, 12, 12, 12]
min as in [10]. We chose the temporal weighting parameter
αt in (10) to be inversely-proportional to the time activities
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Fig. 1. Simulated Tc99m-Teboroxime dynamic gMCAT phantom.
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Fig. 2. SNR values for the different regularization methods.

of myocardium, which was averaged inside the heart region
from an initial reconstruction using (11).
4.2. Results
The reconstruction algorithm was tested for a wide range of
parameters for the different regularization methods. Shown
in Fig. 2 is a plot of the obtained signal to noise ratio (SNR)
values of the reconstructed dynamic images vs time for the
different methods. In this plot, the SNR value was calculated
on the myocardium region and averaged over 20 different
noise realizations. The parameters used for each method were
as follows: 1) β = 3 × 10−6 for Form I; 2) β = 2 × 10−7

for Form II. These parameters were chosen such that the SNR
averaged over time is the best for each method. As can be
seen, the Form II prior can lead to higher SNR values in the
early stage (where fast dynamic change occurs) than the Form
I prior.
In Fig. 3 we show the obtained TACs for the 2×2 regions

of interest (ROIs) of the normal myocardium and the defect,
respectively, from the reconstructed dynamic images by the
different methods. For comparison purposes, the TACs ob-
tained from EM reconstruction using noise-free and complete
projection data (denoted as “Ideal”) are also shown for the
two ROIs. These results show that the Form II method yields
more accurate reconstruction of the time activities. It is noted
that with Form II prior the TAC of the defect ROI is better
separated from that of the normal ROI, which means better
differentiation between the defect and normal myocardium.
In Fig. 4, we show some typical reconstructed dynamic

images by the different methods for the heart region at time
t = 2, 5, and 11 min. These images show that the intensity
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Fig. 3. Reconstructed time activity curves by the different methods.
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Fig. 4. Reconstructed images by the different methods. Note that the defect
is initially dimmer at the early stage (a), but becomes notably brighter than
the normal heart wall in the late stage (c).

level of the heart wall is more accurately reconstructed during
the early stage with the Form II prior. Note that the introduced
defect is initially dimmer at the early stage, but becomes no-
tably brighter than the normal heart wall in the late stage.

5. CONCLUSIONS
In this work we investigated the use of temporal basis func-
tions for dynamic image reconstruction in emission tomog-
raphy. We proposed an adaptive regularization prior where
smoothing is enforced according to the time-varying data sta-
tistics. Our experiments show that the proposed approach
can yield more accurate reconstruction of the time activities,
which is important for differentiation between perfusion de-
fects and the normal myocardium.
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