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ABSTRACT

We consider localized instantaneous sources that reside in a 2D dif-
fusive environment. Our goal is to reconstruct the induced field
from the measurements obtained by distributed sensors. Although
the field is non-bandlimited, we capitalize on the fact that it is com-
pletely determined by a finite number of parameters to develop a
method that allows perfect reconstruction. We demonstrate how
these results can be applied in practice in the particular case of heat
diffusion. Simulation results confirm the effectiveness of the method.

Index Terms— Tomography, FRI, heat, diffusion, Radon

1. INTRODUCTION

Sensor networks are typically used to monitor a physical quantity
over space and time. A particular challenge of the sampling problem
in sensor networks arises from the fact that the considered signals
are usually neither bandlimited in space nor in time. While the filter-
ing over time can be locally performed at each sensor, filtering over
space remains a serious sampling limitation. Still, depending on the
physical properties of the environment, we can identify the interac-
tions between the sources and the environment as a specific filtering
operation. Examples are found in diffusion processes, where the
initially localized release of a point source is spread (filtered) over
space in a Gaussian manner. Practical situations include heat diffu-
sion, gas diffusion, pollutants diffusion in water, etc. Incorporating
the physical characteristics of the field in the sampling scheme will
help us to go beyond the standard sampling results.

In this work, we consider localized instantaneous sources that
reside in a 2D diffusive environment. Due to their localization in
space and time, the sources can be modeled as a set of weighted
Diracs. After the activation of a source, the induced field, although
non-bandlimited, is completely determined by a finite set of parame-
ters, namely, the source location, its time origin and the total amount
released. Recent results in [1] extend the original Shannon theory to
the sampling of signals characterized by a finite number of param-
eters, so called the signals with finite rate of innovation (FRI). The
direct reconstruction approach is exchanged for the reconstruction of
the finite number of parameters. Intuitively, only a finite number of
samples is required for perfect reconstruction. The exact sampling
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schemes, for large classes of the 1-D and 2-D FRI signals, have been
developed in [1, 2, 3].

In this work, we will extend some of the results formulated in
[4] for a set of 2-D Diracs. The property of the Radon transform
projections is exploited in order to reduce the 2-D problem to its
one-dimensional equivalent. Two general scenarios, when the Diracs
appear at the same but unknown time and when they appear at differ-
ent times, are envisioned. The algorithms can be extended to track
the appearance of the new sources, as well.

While these results are applicable to any diffusive environment,
obtaining the Radon transform projections still remains the practical
challenge. However, we demonstrate that in the case of heat diffu-
sion the corresponding projections can be estimated from acoustic
tomography measurements. Time of flight measurements are used
for this purpose. Possible applications range from large scale envi-
ronmental monitoring to small scale heat control in medical therapy.
Our simulation results confirm the applicability of the method.

2. PROBLEM STATEMENT

We consider the problem of reconstructing a 2-D field induced by
sources localized in space and time. Moreover, we want to compute
the positions of the sources, the origin of time and the total amount
released. A set of 3-D weighted Diracs is used to model the sources:

s(x, y, t) =

K−1∑
k=0

ckδ(x − xk, y − yk, t − tk).

All diffusive processes are governed by diffusion, or equivalently
the heat equation. From this equation, we know that a concentrated
deposit diffuses away in a Gaussian manner as described by the 2-D
Green’s function, also known as the 2-D heat kernel:

h(x, y, t) =
1

4πDt
e−

x2+y2
4Dt , (1)

where D is a diffusion constant. At any point we can compute the
field as a convolution of the local sources with the heat kernel:

g(x, y, t) = [s∗h](x, y, t) =

K−1∑
k=0

ck

4πD(t − tk)
e
− (x−xk)2+(y−yk)2

4D(t−tk) .

(2)
The resulting field is simply a weighted sum of K 2-D Gaussians
that diffuse over time. Notice also that g(x, y, t) is completely de-
termined by the parameters of the sources {ck, xk, yk} and the time
origins tk.
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Fig. 1. Sampling of 2-D Gaussians using the Radon projections. For the
perfect reconstruction of 2 Gaussians we need only 2 ·4+1 samples of the
Radon transform.

3. SOLUTION BASED ON PROJECTIONS

In this section, we envision three possible scenarios. The first one
assumes that all Diracs appear at the same but unknown time. This
assumption allows to obtain the exact reconstruction of the field
g(x, y, t). In the second scenario, the Diracs appear at different
times and only an approximate solution is proposed. In the third
scenario we also consider different tracking problems.

3.1. All sources activated at the same time

In the following, for the sake of simplicity, we are first going to show
the method for estimating the parameters {ck, xk, yk} assuming that
the time origin t0 is known. The algorithm for estimating t0 will
follow. The second algorithm does not require the knowledge of
{ck, xk, yk} and, in practice, it should be done first.

3.1.1. Retrieving the parameters ck, xk and yk

Let us assume that all Diracs appear at the same time t0 = 0, and
that we observe the system at time t > 0. This implies that, at the
time instant t, the variance of the Gaussians is σ2 = 2Dt,

g(x, y, t) =

K−1∑
k=0

ck

4πDt
e−

(x−xk)2+(y−yk)2

4Dt . (3)

Considering the Radon transform of g(x, y, t), defined as:

Rg(p, θ, t) =

∫ ∞

−∞

∫ ∞

−∞
g(x, y, t)δ(p − x cos θ − y sin θ) dx dy,

(4)
we want to show that a finite number of line integrals in (4) is suffi-
cient for the perfect reconstruction of g(x, y, t).

For a fixed angle θ0 the integral in (4) is computed over the line
Γp,θ0 defined by p = x cos(θ0) + y sin(θ0). Let us introduce the
pq-axes, as shown in Fig. 1, and simplify the computation of the
integral. Readily, we have that for any given angle θ0:

Rg(p, θ0, t) =

∫ ∞

−∞

K−1∑
k=0

ck

4πDt
e−

(p−pk)2+(q−qk)2

4Dt dq

=

K−1∑
k=0

ck√
4πDt

e−
(p−pk)2

4Dt . (5)

The Radon transform Rg(p, θ0, t) is a weighted sum of K 1-D Gaus-
sians. The problem of reconstructing the parameters ck and pk from

a finite number of samples of Rg(p, θ0, t), taken at the positions
p = nL, for n = 0, . . . , N − 1 and N ≥ 2K + 1, is already solved
in [1]. For a fixed time t, the samples can be written as:

Rg[n] =

K−1∑
k=0

(
ck√
4πDt

e−
p2

k
4Dt

)
· e

npkL

2Dt e−
n2L2
4Dt . (6)

If we let S[n] = Rg[n] · e
n2L2
4Dt , ak = ck√

4πDt
e−

p2
k

4Dt and uk =

e
pkL

2Dt , then (6) is equivalent to

S[n] =

K−1∑
k=0

akun
k , n = 0, . . . , N − 1. (7)

Note that, S[n] is a linear combination of the real exponentials uk.
To compute uk we need to find the so called annihilating filter, that
satisfies

⎡
⎢⎢⎢⎣

S[K] S[K − 1] . . . S[0]
S[K + 1] S[K] . . . S[1]

...
...

. . .
...

S[2K] S[2K − 1] . . . S[K]

⎤
⎥⎥⎥⎦ ·

⎛
⎜⎜⎜⎝

A[0]
A[1]

...
A[K]

⎞
⎟⎟⎟⎠ = 0.

(8)
or, shortly

S · A = 0.

The method is described in [1]. The roots of the annihilating filter
polynomial are exactly the uk. The coefficients ak are then directly
obtained using (7). From uk we find the positions pk and from ak

we find the weights ck.

Since the set of locations pk does not itself define the positions
of the 2-D Diracs we need one more projection Rg(p, θ, t), e.g. for
θ = θ0 + π

2
. Now, the integration is done along the lines parallel to

the p-axis:

Rg(q, θ0 + π/2, t) =

K−1∑
k=0

ck√
4πDt

e−
(q−qk)2

4Dt .

Sampling the signal Rg(q, θ0+π/2, t) at q = nL, for n = 0, . . . , N−
1 and N ≥ 2K + 1, and applying the annihilating filter method, we
can first compute qk and then the weights ck. By comparing the
weights computed from the first and second projection one we will
be able for every pk in the first set to associate the corresponding
qk in the second set. The proposed method gives the exact posi-
tions and weights if all pk, qk and ck are distinct. The case where
some of the parameters are equal can be resolved by computing the
Radon transform for K + 1 different angle of θ [4]. For the case of
distinct parameters ck, pk and qk, the signal is completely character-
ized from 2K + 1 samples of Rg(p, θ0, t) and 2K + 1 samples of
Rg(q, θ0 + π/2, t).

3.1.2. Retrieving the time origin

Assume now that we do not know the time origin t0. Let us again
consider the annihilating filter formula (8). The entries of the matrix
are annihilated by the K roots of the filter A = [A[0] . . . A[K]]T .
The matrix S has the rank K and it is rank deficient. If we write

S[n] = Rg[n] · e n2L2
4Dt = Rg[n] · αn2

, then we need to find such α
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for which

S =

⎡
⎢⎢⎢⎢⎣

Rg[K]αK2
Rg[K−1]α(K−1)2 . . . Rg[0]α0

Rg[K+1]α(K+1)2 Rg[K]αK2
. . . Rg[1]α1

...
...

. . .
...

Rg[2K]α(2K)2 Rg[2K−1]α(2K−1)2 . . . Rg[K]αK2

⎤
⎥⎥⎥⎥⎦
(9)

is rank deficient. This is not an easy task especially for noisy data.
The straight forward method would be to search for α that minimizes
the smallest eigenvalue. This method proves to be very unstable. In-
stead, we search for α that minimizes the Effective Rank [5]. This
new measure represents how the energy is distributed among the di-
rections of the eigenvectors and it can be seen as a continuous ex-
tension of the rank. The method largely outperforms the minimum
eigenvalue approach (see Sec. 4.2).

3.2. General case

Assume that all Diracs appears at different time instants tk. Let us
rewrite the equation (5) as,

Rg(p, θ0, t) =

K−1∑
k=0

ckh(p − pk, t − tk)u(t)

where h(p, t) = 1√
4πDt

e−
p2
4Dt is a 1-D Gaussian and u(t) is a step

function that ensures positive t. Taking the Fourier transform, the
shifts in space and time translate into the phase shifts:

F (Ωp, Ωt) =

K−1∑
k=0

ckH(Ωp, Ωt)e
−jΩppke−jΩttk .

The term H(Ωp, Ωt) does not depend on k and can be taken out of
the sum. It also represents the 2-D Fourier transform of h(p, t) and
can be easily computed. Finally, we get

F (Ωp, Ωt)(DΩ2
p + jΩt) =

K−1∑
k=0

cke−jΩppke−jΩttk . (10)

Approximating the Fourier transform F (Ωp, Ωt) with the Discrete
Fourier Transform (DFT) coefficients taken at Ωp = 2πn/NPs and
Ωt = 2πm/MTs, for n = 0, . . . , N −1, m = 0, . . . , M −1 where
Ps and Ts are the sampling intervals in space and time respectively,
we obtain:

PsTs F (n, m)(D
2π2n2

N2P 2
s

+j
2πm

MTs
)≈

K−1∑
k=0

cke
−j

2πnpk
NPs e

−j
2πmtk
MTs .

(11)
Notice that on the right-hand side of (11) we have a linear combi-
nation of K complex exponentials. Fixing, for example, m = 0 we
can again apply the annihilating filter method and compute the roots

e
−j

2πpk
NTs from which we obtain the positions pk. Repeating the same

steps for a fixed n, we can compute the time instants tk. The coef-
ficients ck can then be directly obtained from (11). We remark that
the equation (11) is only an approximation of (10) since the DFT co-
efficients are aliased. The aliasing decreases as the time t increases
since F (Ωp, Ωt) is becoming more and more bandlimited-like. This
means that for an appropriate t, one can minimize the total effect of
aliasing and noise, and optimize the estimation.

3.3. Tracking

Using the previous results different tracking algorithms can be imag-
ined. For example, assume that a group of K Diracs can appear at
different times. If we sample the field over time fast enough, so that
no more than one group of Diracs appear in the same sampling in-
terval, then the exact reconstruction method can be derived from the
results in 3.1. It is sufficient to compute the predicted field that is
generated by the active sources at the previous state, i.e. Rgi−1[n, t],
and to subtract that from the current state Rgi[n, t],

Rgi[n, t] = Rgi[n, t]−Rgi−1[n, t] =

K−1∑
k=0

ck√
4πD(t−ti)

e
− (nL−pk)2

4D(t−ti) .

The resulting signal is a sum of K Gaussians with the same variance
σ2 = 2D(t− ti), and the relevant parameters are found by applying
the algorithms in 3.1. If more than one Dirac with different time
origin appear in the same sampling interval then the approximate
results from 3.2 can be used.

4. HEAT DIFFUSION AND ACOUSTIC TOMOGRAPHY

4.1. The estimation of Radon transform

From a practical point of view, there is a close connection between
the Radon transform projections of temperature distribution and acous-
tic tomography measurements. Namely, the typical time of flight
measurements, provide the information about the corresponding Radon
transform [6]. Assume that the acoustic transmitters and receivers
are placed around a certain region of interest D, as shown on Fig. 1,
and that we can measure the time of flight from the transmitter lo-
cated at the position qT to the receiver located at the position qR = 0.
Then,

τ =

∫ qT

qR

1

c
dq, (12)

where c is the speed of sound. In dry air, the temperature T can be
inferred from the speed of sound through the relation

c =
√

RγT , (13)

where R is the gas constant and γ = 1.4. Assume that at the instant
t0 = 0 the K localized heat sources are active, and we want to esti-
mate the temperature variation at time t. Applying the same model
as before we have that T (t) = T (0) + ΔT and ΔT = g(x, y, t).
Linearizing (12) and using (13), we have:

τ =

∫ qT

qR

1

c0
dq− 1

c2
0

∫ qT

qR

Δc dq =

∫ qT

qR

1

c0
dq− Rγ

2c3
0

∫ qT

qR

ΔT dq,

where c0 =
√

RγT (0). If we define R̂g(x, y) as the Radon trans-
form of ĝ(x, y) = g(x, y) for (x, y) ∈ D and ĝ(x, y) = 0 outside,
then

R̂g(p, θ0) =
2c3

0

Rγ

(∫ qT

qR

1

c0
dq − τ

)
.

We compute the Radon transform R̂g(p, θ0, t) in a similar way as
before:

R̂g(p, θ0, t)=

∫ qT

0

K−1∑
k=0

ck

2πσ2
e−

(p−pk)2+(q−qk)2

4Dt dq

=

K−1∑
k=0

ck√
4πDt

(
erf(

qk√
4Dt

)+erf(
qT −qk√

4Dt
)

)
e−

(p−pk)2

4Dt .
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Fig. 2. Comparison of the time origin search algorithms: the first one searches for the α that minimizes the effective rank (plain) measure and the second one
searches for the α that minimizes the smallest singular value (dashed). The optimal α is 1.04. (a) Noiseless case. (b) Noisy case (SNR= 45dB).
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Fig. 3. (a) Relative MSE for the position estimation, (b) The reconstruction of two 2D Diracs. The samples of the Random transform are computed along the
dashed lines.

Similarly,

R̂g(q, θ0+
π

2
, t) =

K−1∑
k=0

ck√
4πDt

(
erf(

pk√
4Dt

)+erf(
pT −pk√

4Dt
)

)
e−

(q−qk)2

4Dt .

The parameters {ck, pk, qk} and t0 can be found by applying the
algorithms previously introduced in Sec. 3.1.

4.2. Simulation results

In the following, we present the simulation results. The setup con-
sists of two local heat sources (2D Diracs). The parameters of the
sources are randomly chosen in the corresponding intervals: ck ∈
(0.5, 10), xk, yk ∈ (0, 4). All Diracs appear at the same time.

We first tested the time search algorithm. According to (9) we
need to search for α that makes the matrix S rank deficient. In the
case of the Effective Rank (ER) criterion, the minimum ER cor-
responds to the largest discrepancy in the eigenvalues distribution.
Therefore, the optimal α is the one that contributes most to the clear
differentiation between the signal and noise space. In Fig. 2, we plot
the ER and the minimum eigenvalue of S with respect to α. For
comparison purpose, the matrix S is normalized and the results are
scaled to the interval [0, 1]. In the noiseless case, the two methods
provide the correct answer αopt = 1.04 [Fig. 2(a)]. In the noisy
scenario (SNR=45dB for the samples Rg[n]), the ER clearly out-
performs the singular value approach which basically provides no
insight about the optimal solution [Fig. 2(b)].

Fig. 3(a) shows the performance of the position finding algo-
rithm proposed in Sec. 3.1.1. This algorithm is known to be very

unstable for the case of noisy data. Therefore, we use the successful
variation of the original algorithm, that is developed in [7]. Good es-
timates are obtained by performing the oversampling in space with
N =5(2K+1). The relative MSE represents the mean square of the
relative error of the positions. The algorithm gives good results for
SNR>40dB. Fig. 3(b) shows one reconstruction example.
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