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1 France Télécom R&D, 4, rue du Clos Courtel, 35512 Cesson-Sévigné Cedex, France
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ABSTRACT

This paper proposes a new adaptive scheme to cope with the

limits of the conventional 2D wavelet. The principle is to

search for the warped version of the original image which is

best adapted to this isotropic kernel. Unlike most prior works,

the scheme does not rely on geometry detection or exhaustive

search for the best local directions. It formulates a Descrip-
tion Length of the warped Image which does not depend on

any a priori about geometry. We demonstrate that its min-

imization can be compared to a motion estimation between

two frames. The warped image can then be efficiently coded

by any conventional wavelet coder. An application is pre-

sented where the warping is modelized by a regular 2D-mesh.

At low rates, results show a significant reduction of ringing

artefacts compared to JPEG2K.

Index Terms— Adaptive Compression, Wavelet, Mesh

1. INTRODUCTION

Shortcomings of classical 2D-separable Wavelets have been

put forward for more than a decade. This isotropic repre-

sentation kernel cannot efficiently represent the geometrical

structure of an image when this structure is neither horizontal

nor vertical. This has a consequence on the visual quality of

images approximated with a limited number of coefficients:

features of high perceptual impact, mainly curved edges of

objects, are corrupted by the appearance of a ringing effect

in each direction. The motivation is then to add a touch of

anisotropy to the representation.

Different approaches have been proposed to follow this

goal. One approach is to project the image on a dictionary

of fixed anisotropic atoms, such as Contourlets [1]. But the

redundancy and the non-adaptivity of these techniques moti-

vates the research on new adaptive basis. Adaptivity can be

looked for in a variety of ways. We essentially distinguish be-

tween two kinds of approaches. On the one hand, adaptivity

can be obtained by extracting from the signal a relevant geo-

metrical content beforehand. Whether this extraction resorts

on detection of contours [2] or regular curves [3], these tech-

niques are based on geometrical a priori. This does not insure

a fair modelization of energetical properties in the transform

domain. On the other hand, recent approaches proposed to

Fig. 1. Goal of the scheme: Pre-Warp the Image so as to

adapt the resulting signal to any conventional wavelet coder.

Warping parameters are transmitted independently.

express an energy in the transform domain as a function of

adaptivity parameters. Minimizing this energy leads to op-

timal parameters in a certain sense. For this purpose, most

techniques [4, 5, 6] implement an exhaustive search. For

complexity and compacity concerns, this imposes to segment

the image into blocks and independently compute for each of

these blocks a limited number of parameters. Hence, it leads

to a discontinuous and low-level adaptivity. Note that some

techniques, like [3, 7], propose regularization procedures to

optimize the parameters in a Rate/Distorsion sense.

This paper proposes a new energy formulation for the adap-

tivity issue. The principle is to search for the warped version Ĩ
of an image I which is best adapted to a conventional wavelet

decomposition (see Fig. 1). A similar purpose is searched for

in [2, 3]. The solution we propose is different because it is

not based on any a priori about geometry. The second sec-

tion describes our energy formulation considering any para-

metric warping transformation w. It demonstrates how the

minimization process can be compared to a classical motion

estimation between two frames. The third section outlines the

specificities of an implementation where w is modelized by

a 2D-regular mesh. Finally, the warping estimation layer is

assembled to JPEG2K and results are shown.

2. ENERGY FORMULATION

2.1. Notations

Let us define a reversible transformation w that maps a posi-

tion p̃ in a Domain D̃(⊂ Z
2) - that we call the Warped Do-

main - to a position p in the Image Domain D(⊂ Z
2). Given

w, the original Image I and the Warped Image Ĩ are related

as follows:

Ĩ(p̃) = I(w(p̃)), I(p) = Ĩ(w−1(p)) (1)
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In this section, we will only assume w to be a parametric

model composed of a set of Np undefined parameters {pi}i=1..Np
.

In accordance with Fig. 1, the key issue of the approach is to

optimize w such that the entropy of the resulting Warped Im-

age Ĩ in a conventional wavelet basis is minimized. Because

geometry strongly contributes to the entropy of I , one can ex-

pect the computed w to have some relation with the image

geometry.

We will now explain the construction of an energy func-

tion which depends on w.

2.2. Building the Energy as a Function of w

Let ψjn refer to a 2D discrete Wavelet scaled with a factor

2−j (j ∈ Z+) and translated to a position n ∈ Z
2. The dot

product of Ĩ with ψjn gives a wavelet coefficient cjn.

Considering the set of wavelet coefficients {cjn}j=0..J−1
for a user-fixed J , we define the Description Length DLJ as:

DLJ =
J−1∑

j=0

γ2
j ·

∑

n

c2
jn, (2)

where γj is a weight that can be adjusted in relation to

the statistics of the coefficients at the scale 2−j . This formu-

lation is particularly well fitted to Gaussian distributions in

the subbands. Indeed, if we assume that a coefficient {cjn} -

for a given j - follows a Gaussian probability law P (cjn) ∼
N (0, 1/γ2

j ), then the Description Length of the transformed

signal is DLJ = −∑J−1
j=0 log2(P (cjn)) which can be re-

duced as in Eq. (2).

To make the minimization of DLJ tractable, we need to

express it as a function of w. Now, an inverse wavelet trans-

form gives:

Ĩ(p̃) =
jmax∑

j=0

∑

n

cjn · ψ∗jn(p̃) (3)

where ψ∗jn refers to the synthesis kernel corresponding to

ψjn, and jmax to the greatest possible decomposition level of

Ĩ .

The right part of Eq. (3) can be decomposed to yield:

j0−1∑

j=0

∑

n

cjn · ψ∗jn(p̃) = Ĩ(p̃) −
jmax∑

j=j0

∑

n

cjn · ψ∗jn(p̃) (4)

for any j0 ∈ [0, jmax].
As the signal

∑jmax

j=j0

∑
n cjn · ψ∗jn is the approximation

of Ĩ obtained by setting to 0 each coefficient cjn for j ∈
{0..j0 − 1}, we will refer to it as Ĩj0 . From Eq. (4), Parse-

val theorem gives:

j0−1∑

j=0

∑

n

c2
jn =

∑

p̃

(Ĩ(p̃) − Ĩj0(p̃))2 (5)

Therefore, it is possible to express the energy in (2) as:

DLJ(w) =
J∑

j0=1

η2
j0 ·

∑

p̃

(I(w(p̃)) − Ĩj0(p̃))2, (6)

with the new weights η2
j0

verifying the constraints:

γ2
j =

J∑

j0=j+1

η2
j0 ⇒

{
η2

J = γ2
J−1

η2
j0

= γ2
j0−1 − γ2

j0

(7)

This constraints show that the expression in (6) is only

valid provided that the weights γ2
j are decreasing with j. Now,

for most natural images, we observe in practice that the en-

ergy in a subband j is increasing with j. Under the Gaussian

assumption, γ2
j is inversely proportional to this energy, and

therefore the condition is verified.

Because DLJ is expressed as a function of w, we can now

search for the set of parameters {pi}i which minimizes it.

2.3. The Minimization Algorithm

Each signal Ĩj0 can be computed only if Ĩ (hence, w) has been

computed beforehand. For that reason, we decide to consider

Ĩ as a new variable in the minimization process. Then, we for-

mulate the minimization issue as a joint optimization where

the best couple (w, Ĩ) is looked for, subject to the constraint:

Ĩ = I(w(p̃)). We propose to solve this optimization prob-

lem through an iterative Expectation Maximization-like pro-

cedure. At each iteration, an estimate of w is updated given

the current observation of Ĩ . In return, Ĩ is refined given the

updated observation of w:

COMPUTE-WARPING(I)
1 n ← 0, w ← Id, Ĩ(0) ← I // Initialization

2 while (n < nmax or Δw > Δwmin)
3 do n ← n + 1;
4 w(n) ← UPDATE-WARPING(I, w(n−1), Ĩ(n−1))
5 Ĩ(n) = w(n)I
6 return w

From the previous algorithm, it is clear that the optimiza-

tion complexity is related to step 4. Knowing Ĩ(n−1), it is

possible to compute each current approximation Ĩ
(n−1)
j0

and

minimize Eq. (6) taking w(n−1) as the initial guess for w(n).

Further, it can be shown that:

arg min
w(n)

DLJ(w(n)) = arg min
w(n)

∑

p̃

(I(w(n)(p̃))−Ĩ
(n)
ref (p̃))2,

(8)

with

Ĩ
(n)
ref (p̃) =

∑
j0

η2
j0
· Ĩ(n−1)

j0
(p̃)

∑
j0

η2
j0

.
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The problem expressed in the right hand side of Eq. (8) is

the minimization of a Displaced Frame Difference between Ĩ

and a current reference frame Ĩ
(n)
ref . It is a well-known prob-

lem in the Video Coding Community, where w does not refer

to a geometry but a motion. A variety of solutions has been

proposed. They depend on their choice for the motion model.

In the next section, we will present the specificities of an im-

plementation using an active mesh as the model for w.

3. IMPLEMENTATION WITH A MESH

3.1. Geometry modelization with a Mesh

A geometry that is modelized with any mesh consists of two

types of parameters: geometric parameters, i.e. the posi-

tions of its nodes, and connectivity parameters, i.e. how these

nodes are linked to one another. In this work, we consider a

regular mesh with Np nodes. Hence, no connectivity para-

meters must be transmitted. Let {pi}i=1..Np
be the positions

of these nodes in D. Each position pi is arbitrarily mapped

to a position p̃i in D̃. We decide to place the positions p̃i

uniformly in D̃. Therefore, the only geometric parameters to

transmit are the size of the faces in D̃ and the positions {pi}i.

Letting φ(p̃) refer to a 2D shape function defined in D̃
(e.g. the bilinear function), a continuous transformation w is

defined as follows:

w(p̃) =
Np∑

i=1

φ(p̃ − p̃i) · pi (9)

3.2. Estimation of Nodes Displacements

The computation of the positions {pi}i follows the algorithm

described in paragraph 2.3. As we said, the technical issue

of this algorithm is the update of w at each iteration (step

4). In this work, we choose to implement this step using a

bi-conjugate gradient descent algorithm. The linearization of

Eq. (8) gives a sparse linear system. The solution of this sys-

tem is a set of displacements for each position pi. Details of

the method are given in [8]. Initially, the nodes are placed

uniformly in D so that pi = p̃i ∀i ∈ {1, .., Np} (or w = Id).

At each iteration, the positions are updated globally by solv-

ing the linear system. Ĩ is then updated by warping the orig-

inal image. The process goes on until a maximum number

of iterations has been reached, or the maximum displacement

of the nodes is smaller than a threshold. Experiments have

shown that no significant displacement occurs after 10 to 15

iterations. In term of complexity, this procedure can be com-

pared to a motion estimation (with an active mesh) between a

current frame and a reference frame, with the reference frame

being updated at each iteration. The basic algorithm is greedy

but can be sped up in numerous ways, which is not the topic

of this article. Note that, in a coding scheme, the complex-

ity of the decoding step remains comparable with a classi-

cal wavelet coder. Only the post warping in Fig. (1) must be

added.

3.3. Mesh Warping and PSNR

As we work in a discrete setting, a non-isotropic transfor-

mation w, as defined in Eq. (9), cannot comply with the re-

versibility assumption because of the resampling implied. In-

deed, such a transformation authorizes irreversible warpings,

such as stretchings or contractions. In a coding scheme, only

texture regions are visually affected by this loss at high rates.

On the edges, this loss has no visual impact. As experiments

have shown that the MSE was not a good indicator of this

loss, the goal of such a coding scheme is not high SNR but

high perceptual quality. A number of SNR-driven optimiza-

tions can be implemented but this is beyond the scope of this

paper.

4. EXPERIMENTAL RESULTS

4.1. Codec Implementation

Our basic codec implementation is composed of three blocks:

Analysis: estimates w following our energy minimization.

The results presented in this section were obtained by setting

J = 4 and assuming a Gaussian model for the wavelet sub-

bands. w was modelized by a quadrangular mesh with an

initial size of 16x16 for its faces. The outputs are w and Ĩ .

Codec: Ĩ was encoded and decoded using JPEG2K VM8.0

with its default parameters. w was quantized with a pixel

precision and encoded using arithmetic coding.

Synthesis: takes as inputs the decoded warping transforma-

tion ŵ and warped image
ˆ̃I and reconstructs the original im-

age by inverting the warping Î = ˆ̃I(ŵ−1).

4.2. Analysis Results

Fig. 2 shows the outputs of the analysis block taking Lena as

the input image. On the left, the estimated mesh is overlayed

upon the original image. Even though we did not inject any

geometric a priori in the energy formulation, we see that

the nodes have moved towards the geometric features, such

as the contours of the shoulder or the hat. On the right, Ĩ
is represented. We notice that the warping has a tendency to

align and smooth the contours on the horizontal or the vertical

direction, like the right part of the shoulder. This is a result we

could expect because conventional 2D wavelet can represent

those features with fewer coefficients.

4.3. Compression Results

Numerical results of our coding scheme compared to JPEG2K

are given in Fig. 3 for informative purpose. As we expected,

the new scheme does not give high PSNR because of the loss

IV - 163



D D̃
Fig. 2. Outputs of the Analysis Block.

introduced by successive interpolations. However, we believe

that the subjective quality of our scheme is better than indi-

cated from the PSNR values. Fig. 4 provides a qualitative as-

sessment of perceptual quality by comparison with JPEG2K

for low bit rates. The overall perceptual quality of the im-

ages obtained with the new scheme is significantly better than

the one obtained with JPEG2K. Ringing artefacts character-

izing the conventional wavelet are greatly reduced in the new

scheme and the edges of objects are reconstructed with a high

precision with very few coefficients. The irrelevance of us-

ing PSNR values to compare the two coders is particularly

demonstrated by the encoding of Cameraman at 0.4 bpp. The

PSNR obtained with the new scheme is 0.6 dB smaller than

the one obtained with JPEG2K but the subjective quality is

appreciably better. At high rates, some smoothing is percep-

tible on texture parts if no specific optimization is performed.

Fig. 3. Numerical Compression Results for Lena and Cam-
eraman 256x256. The cost of the mesh is 0.02 bpp.

5. CONCLUSION

We have presented a new approach to adapt a signal to a

conventional wavelet decomposition. The adaptation issue is

solved by an energy formulation which is not based on any

geometric a priori. Used as a pre-processing in a wavelet

codec, its efficiency to reduce ringing artefacts has been un-

derlined. Next studies include the relaxation of the regularity

constraint put on the mesh to enable a closer adaptivity, as

JPEG2K: 0.19 bpp, 28.5 dB New Scheme: 0.2 bpp, 28.6 dB

JPEG2K: 0.40 bpp, 29.9 dB New Scheme: 0.40 bpp, 29.3 dB

Fig. 4. Visual Compression Results.

well as a generalization of the energy formulation to higher

dimensional signals or different transforms (e.g. DCT).
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