
A COMPRESSION METHOD FOR ARBITRARY PRECISION FLOATING-POINT IMAGES

Corey Manders, Farzam Farbiz

A*STAR Institute for Infocomm Research
21 Heng Mui Keng Terrace, 119613, Singapore

{cmanders, farbizf}@i2r.a-star.edu.sg

Steve Mann

Dept. of Electrical and Computer Eng.
University of Toronto,

10 King’s College Rd, Toronto, Canada
mann@eecg.utoronto.ca

ABSTRACT

The paper proposes a method of compressing floating-point images
of arbitrary precision. The concept of floating point images is used
frequently in such areas as high dynamic range imaging, where pixel
data stored as 8 or 12-bit integers are insufficient. The compression
scheme presented in the paper organizes the floating point data in
a manner such that already existing compression algorithms such as
JPEG or Zlib compression may be used once the data re-organization
has taken place. The paper compares the result to a popular (but re-
strictive) form of image compression, openEXR, and shows signif-
icant gains over this format. Furthermore, the compression scheme
presented is scalable to deal with floating point images of arbitrary
precision.

Index Terms— Image Analysis, Image Coding, Floating Point
Arithmetic, Image Processing, Imaging.

1. INTRODUCTION: MOTIVATING FLOATING POINT
IMAGES

Typical images taken using digital cameras capture scenes of low
dynamic range. In the past, this was largely the result of inadequa-
cies in both equipment used to capture the data as well as the means
of display for these images. For example, someone taking an im-
age of a person outside will generally point a camera away from
the sun. In essence, what this does is reduce the dynamic range of
the scene. Given typical camera equipment and its limitations, this
will result in a more pleasing low dynamic range image. However,
given the possibility of high dynamic range images [1] [2], as well
as high dynamic range displays [3] high dynamic range images are
now possible. Unfortunately, previous file formats lack the capabil-
ity to store the dynamic range needed. Though other work has been
done on storing data as integer values with a greater range [4], the
same work notes that the “obvious choice” to encode luminance is
“using floating point values”. In such work, the authors choose not
to encode data in floating point numbers because of the problems
inherent in compressing floating point numbers.

One significant design detail should be mentioned about our
compression format, specifically that it is a general method of com-
pressing floating point images. In other work (such as [5] and [6])
there is an assumption that the images are to be viewed by humans
at a specified intensity. Given this criterion, the chrominance of the
image may be compressed more heavily than the luminance. This
of course results in greater compression (with loss), but is largely
unnoticed by viewers. The results we present are only in regards to
lossless compression, although it shall be shown how lossy compres-
sion may be applied. We limit the scope of this paper only to lossless

compression, as the application to lossy compression and its compar-
ison to other methods is the subject of ongoing research. Thus the
comparison to the openEXR format is only done for lossless com-
pression. The method as presented may be applied to decimated
chrominance channels, different colorspace representations, or dif-
ferent floating point representations with ease. The implementation
as presented represents a significant improvement over the authors
previous work (see [7]).

Fig. 1: The top row shows two low dynamic range images taken at both short and long
exposure times. The two low dynamic range are composited to produce a single high
dynamic range image. Notice that in the short exposure time image (top left), the shape
of the bulb is evident, the position of the filament, etc. However, much of the information
of the scene is lost. For example, the flowers to the right of the halogen light are not
seen. Conversely, if we look at the long exposure time image (top right), the flowers are
present, however, much of the information of the bulb is lost. The bottom row shows a
single high dynamic range image in a simple image viewing program. The bottom left
image shows the HDR at a gain approximately equal to the input image shown at the top
left, and the bottom right image shows the HDR image at a gain approximately equal to
the input image shown at the top right. The bottom center image is the high dynamic
range image at an intermediate gain, in effect producing an interpolated exposure. Note
that the bottom row depicts a single HDR image shown at three different gains. The
spatial resolution of the input images is 1520 × 1007 and uses three color channels
(red, green, and blue) which results in a floating point image size of 17.5Mb using IEEE
single precision floating point representation.

2. CREATING HDR IMAGES

The test images which were used for our study were derived by very
simple means. Specifically, many digital SLR cameras now available
provide raw sensor data (for example Nikon and Canon digital SLR
cameras). This data has been shown to be linear in response to the
amount of light detected [8][9]. To build a high dynamic range im-
age, multiple exposures of the high dynamic range scene were taken.
The exposure times used were all possible exposure times available
on the digital camera within reason. For example, there is no sense
capturing a 25 second exposure of the scene if this will result in all

IV - 1651-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

pixels being saturated. Consequently, there is no point in capturing
images which will only result in dark current noise [10]. It is also
known that sensors, including imaging sensors, are most accurate
in the higher end of reported values before saturation occurs [11].
Given these observations, we would like to use pixels in the RAW
images which were captured in this range of the camera’s capabili-
ties. To do this, for each pixel location, the pixel value that was used
was that which belonged to the exposure which produced a pixel in
this desired range (for the images in this paper, the range [0.65,0.9]
was taken. The value was then divided by the appropriate scalar to
bring the pixel value into that of the lowest exposure. Therefore,
if the resulting extended dynamic range image is multiplied by this
scalar, the resulting pixel value will be that of the original image.
In the case where multiple exposures produced more than one can-
didate value for a single location, all values were divided by their
corresponding scalar to bring the values to the lowest exposure, and
the resulting values were averaged. Figure 1 shows two of the many
images used to create a single extended dynamic range image. Using
an appropriate image viewer, these exposures may be recreated from
the resulting high dynamic range image.

Though a rectangular weighting (also called certainty [11]) func-
tion in the case of figure 1 was used, many other possibilities ex-
ist. Using a rectangular function is very easy to compute and use,
however it is susceptible to changes in lighting, camera movement,
or minute scene changes. Other work has used a center weighted
function [2] or more appropriately a right-skewed Gaussian function
[12], which favors high photoquantities and reduces noise in the fi-
nal image. The right-skewed rectangular function was used because
most of the images were taken in well controlled environments. In
situations where the environment is uncontrolled (for example there
exists movement in the image as well as movement in the position
of the camera), previous research [1] [13] shows that HDR images
may also be produced.

3. THE COMPRESSION STRATEGY

In this section we will motivate and describe our method for com-
pressing floating point image files.

3.1. Distribution of extended dynamic range data

The same image that was used in the previous section (figure 1) for
demonstration will continue to be the primary example. However,
the results of the findings will be applied to multiple images in a
future section.

Given that it makes most sense to represent a lightspace image
value (flat response pixel) as a floating point number, we first look at
a typical distribution of data. Because the demonstration image does
in fact capture a wide dynamic range and is represented in floating-
point values, plotting the distribution of values makes little sense.
Thinking ahead as to what the data looks like from the viewpoint of
compression, it makes more sense to look at the distribution of man-
tissas and exponents. Figure 2 shows the distribution of the mantis-
sas and exponents for the extended dynamic range image presented
in figure 1.

3.2. Considering pixel differences

In the case of the distributions shown in figure 2, the mantissas in
particular are close to being uniformly distributed. For this reason,
the values are not easily compressible. However, if we consider dif-
ferences of neighbouring pixels, the distributions change dramati-

4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

Distribution of Exponents

C
ou

nt

Exponent 2−x
0 1 2 3 4 5 6 7 8 9

x 106

0

50

100

150

200

250

Distribution of Mantissas

C
ou

nt

Mantissa of the photoquantity

Fig. 2: Distribution of exponents (left) and mantissas (right) for the extended dynamic
range shown in figure 1. Note that the distribution of mantissas is largely uniform.

Note that the histogram of the mantissas is truncated at 223 = 8388608 as the IEEE
Standard 754 floating point representation allows for 23 bits of data in the mantissa, 8
bits of data in the exponent, and 1 sign bit.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9
x 104Distribution of Successive Pixel Differences in Exponents

C
ou

nt

Successive pixel difference

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

x 107

0

200

400

600

800

1000

1200

1400

1600

1800
Distribution of Successive Pixel Differences in Mantissas

C
ou

nt

Successive pixel difference

Fig. 3: Distribution of horizontal pairwise pixel differences in exponents (left) and
mantissas (right) for the extended dynamic range image shown in figure 3. Note that the
distributions have now become zero centered with a high falloff.

cally. This largely comes from an expectation that given an arbitrary
pixel, the pixels in its neighbourhood will be similar. Thus differ-
ences will largely be zero. This is confirmed in the plot shown in
figure 3, where successive value differences are used.

3.3. Pixel differencing scheme used for compression

To utilize the benefit of pixel differencing, the differencing scheme
shown in figure 4 was used. This scheme assumes that neighbour-
ing pixels will be similar. So that the first column of values in the
image are not all large (since there is no value to the left to create a
difference), the difference to the value directly above is used. Thus,
if all pixels in the image are roughly similar, the only large value to
be stored in the image is the value stored in the top left corner.

The scheme may easily be defeated. For example, if a checker-
board image was created where neighbouring pixels were dramati-
cally different, there would be no savings in this scheme. In fact, the
differencing scheme would result in an image which would likely
take more space to store (assuming LZW or zlib compression is
used). Just as JPEG compression assumes “natural” images, we con-
sider images such as pixel-wide checkerboard patterns unnatural and
unlikely.

3.4. Expanding value differencing

Differencing in terms of the image presented in figure 1 works tremen-
dously well in terms of the exponent. To demonstrate this, this
image was compressed by splitting the exponents and mantissas.
Single-precision floating point numbers were used with the usual
IEEE specification of three bytes allocated to the mantissa and one
byte allocated to the exponent. The differencing scheme was also

IV - 166

Fig. 4: The differencing scheme using to reduce the overall size of the values to be
represented in the extended dynamic range image. Note that the original light values are
always used. Thus, the value stored in position l3 is the value l3 − l0. The value stored
in position l1 is l1 − l0.

Component Uncompressed Size Compressed Size

Exponent 4484.4Kb 604.7Kb
Low Byte 4484.4Kb 3981.8Kb
Middle Byte 4484.4Kb 3720.9Kb
High Byte 4484.4Kb 2353.3Kb

Table 1: The resulting sizes of each compressed component using byte image differ-
ences. The resulting lossless compressed file is 10660Kb rather than the original file
size of 17937.2Kb. This represents a 40% savings in file size.

utilized. The resulting exponents were compressed from 4484.4Kb
to 604.7Kb. However, the mantissas compress from 13453.2Kb to
11084.4Kb. This implies a 86.5% savings in the exponent and only
a 17.6% savings in the mantissa.

Following the similar neighbouring pixel idea, it is reasonable
to assume that the first bytes of neighbouring values mantissas will
be similar, and to a lesser extent, the lower order bytes will contain
similarities. Using this logic, the three orders of bytes were com-
pressed separately. The method can be thought of as first separating
the image into mantissa and exponent images, and then splitting the
mantissa image into high-byte, mid-byte, and low-byte images. We
have stored and processed the file as a single-precision floating point
value for simplicity. The byte decomposition scheme is of course
easily applied to double-precision floating point values, or, floating
point representations of higher precision.

Using zlib (see http://www.zlib.net) compression on each of the
four bytes, the images were written to a single file. The compo-
nent sizes shown in Table 1 were observed. Note that to aid in the
overall compression, the byte images for each color channel were or-
dered sequentially. That is, a single array was created from first the
red, green, and blue high-byte mantissa images, then the middle-byte
color images, then low, then the red, green, and blue exponent im-
ages. By grouping like colors, and like floating point bytes together,
the array could be easily reconstructed into the original floating point
image. However, the array also successfully groups similar compo-
nents together.

4. TEST SET AND RESULTS

Using the method described previously to capture high dynamic range
scenes, the images shown in figure 5 were composited from several
low dynamic range images to produce a single high dynamic range
image. As well as applying our compression scheme as described
to the HDR images in 5 and 1, the images were compressed using
openEXR’s format. To be able to judge the differing compression
schemes on an equal footing, code was written using the openEXR
libraries to write out .exr files with red, green, and blue colour chan-
nels. Each colour channel was written out as 32-bit single-precision
floating point data. The code which was used to perform this action

Fig. 5: Images used to test the floating-point compression scheme. As well the HDR
image shown in figure 1 was also used. The HDR images in the set are shown at a low
gain (left) and a high gain (right). Each row is one HDR image shown at a low (left) and
high (right) gain.

is available at [14]. The results of each form of compression on the
test images are shown in table 2. As one may observe from the table,
the savings over the openEXR format is between 16− 22%.

The compression strategy presented offers some other advan-
tages given the one byte groupings used. Specifically, many existing
image compression routines are designed for 8-bit (one byte) data.
For example, JPEG compressors are most often written expecting
data in this form. Thus, already existing compression strategies may
be applied to each of the byte images. The organization into one-
byte high, medium, and low mantissa and exponent images allows
the zlib compression which was used for the lossless encoding of
each byte image to be easily implemented (to see the code used, look
at www.eyetap.org/∼corey/code.html). We also applied varying lev-

Image Raw Floating Open Proposed Improvement
Point EXR Scheme Over openEXR

Flowers 18Mb 14Mb 11Mb 16.5%
Plant 18Mb 13Mb 11Mb 16.8%
Sun 18Mb 15Mb 12Mb 20.8%
Flashlight 70Mb 63Mb 50Mb 21.4%
Bike 18Mb 16Mb 13Mb 20.0%

Table 2: Results of compressing five HDR files with openEXR as well as the proposed
strategy. The flashlight image was composed using the technique presented, but from
low dynamic range base images of spatial resolution 3038 × 2012, whereas all other
images used base files of spatial resolution 1520 × 1007. The “improvement over
openEXR” column was computed directly from the byte counts of the resulting files.
Note that the first image (Flowers) appears in figure 1, where as the following four high
dynamic range images appear in figure 5.

IV - 167

els of JPEG compression to the low order mantissa image, and were
able to further compress the HDR images without any noticeable
difference (applying JPEG compression to all other byte images did
produce artifacts as the quantization was increased). We have not re-
ported these compression results as the topic is beyond the scope of
this article, and, it is likely that this loss of precision could be signif-
icant to computations on the HDR image. For the present topic, we
restrict ourselves to lossless compression. We only wish to suggest
that the scheme allows for the possibility of lossy compression using
existing tools.

4.1. The value of more bits

One criticism that may come up in regard to the 32-bit IEEE floating
point precision used is that it uses more bits than are necessary to
span the dynamic range of the human eye (the exponent uses one
byte), and, uses more bits than are necessary to represent increments
that are just under the just noticeable difference (JND) of the human
eye (the mantissa uses three bytes). Though this is certainly true:

• The scheme is presented as a general strategy. It is completely
conceivable that one may want to record images beyond the
range of the human eye, or, for that matter, with discrete in-
crements far below that of the just noticeable difference of the
human eye.

• A high precision format is appropriate as an intermediate for-
mat during processing of the image. This is comparable to
“guard bits” commonly used in microprocessors.

• In the case of using a high number of bits where a lower num-
ber may be necessary, after the differencing is performed on
the data, the unnecessary bytes in the mantissa and exponent
will mostly be zero. Thus these bits will compress extremely
well.

• The compression strategy is easily scaled down to less bits
(for example the NVidia half-precision or fp16 format).

5. CONCLUSION

We have presented a compression strategy for floating-point images.
We have also shown a very simple means of producing high dy-
namic range images given a scene with a large dynamic range. For
the majority of the paper, the data used was single-precision IEEE
floating-point representation. This choice made the comparison to
the openEXR format rather simple. Aside from the compression im-
provement over openEXR (shown in table 2), the strategy has several
other benefits over openEXR. Specifically, the scheme is scalable to
any floating point precision. In addition, it may be scaled down to
use the NVidia half-precision format. Given the expansion of the
precision to any number of bits, the scheme makes no assumptions
about the dynamic range of the images. Other formats assume that
the dynamic range is limited to that of the human eye (for exam-
ple [4] [6] [15], or the openEXR format used for comparison in this
work). Additionally, the compression strategy is easily expandable
to lossy compression given that already developed techniques may
be applied. To this end, the possibility of compressing the low or-
der byte using JPEG compression was suggested. This however is
not the end of the possibilities. The low order byte image, the most
random and hardest to compress of the bytes, may be compressed in
a lossy manner using any number of techniques (even simple quan-
tization). The means of further compressing the low order byte, or
for that matter any of the bytes, is a complex and subjective issue
dependent upon how the image will be used.

What has been presented is an overall scheme which has tremen-
dous advantages. After separating the floating-point representation
into 8-bit sections, the resulting byte images were then grouped to-
gether and losslessly compressed using zlib compression.

6. REFERENCES

[1] S. Mann and R.W. Picard, “Being ‘undigital’ with digital cameras:
Extending dynamic range by combining differently exposed pictures,”
in Proc. IS&T’s 48th annual conference, Washington, D.C., May 7–
11 1995, pp. 422–428, Also appears, M.I.T. M.L. T.R. 323, 1994,
http://wearcam.org/ist95.htm.

[2] P. E. Debevec and J. Malik, “Recovering high dynamic range radiance
maps from photographs,” SIGGRAPH, 1997.

[3] H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead,
M. Trentacoste, A. Ghost, and A. Vorozcovs, “High dynamic range
display systems,” SIGGRAPH, 2004.

[4] Rafal Mantiuk, Grzegorz Krawczyk, Karol Myszkowski, and Hans-
Peter Seidel, “Perception-motivated high dynamic range video encod-
ing,” ACM Trans. Graph., vol. 23, no. 3, pp. 733–741, 2004.

[5] Ruifeng Xu, Sumanta N. Pattanaik, and Charles E. Hughes, “High-
dynamic-range still-image encoding in jpeg 2000,” IEEE Comput.
Graph. Appl., vol. 25, no. 6, pp. 57–64, 2005.

[6] Greg Ward and Maryann Simmons, “Jpeg-hdr: A backwards-
compatible, high dynamic range extension to jpeg,” November 7-11,
2005.

[7] Steve Mann, Corey Manders, Billal Belmellat, Mohit Kansal, and
Daniel Chen, “Steps towards ’undigital’ intelligent image processing:
Real-valued image coding of photoquantimetric pictures into the jlm
file format for the compression of portable lightspace maps,” Proceed-
ings of ISPACS 2004, Seoul, Korea, Nov. 18 - 19, 2004.

[8] C. Manders, C. Aimone, and S. Mann, “Camera response recovery
from different illuminations of identical subject matter,” in Proceedings
of the IEEE International Conference on Image Processing, Singapore,
Oct. 24-27 2004, pp. 2965–2968.

[9] C. Manders and S. Mann, “Determining camera response functions
from comparagrams of images with their raw datafile counterparts,” in
Proceedings of the IEEE first International Symposium on Intelligent
Multimedia, Hong Kong, Oct. 20-22 2004, pp. 418–421.

[10] D. Yang, B. Fowler, A. El Gamal, H. Min, M. Beiley, and K.Cham,
“Test structures for characterization and comparative analysis of CMOS
image sensors,” Proc. SPIE, vol. 2950, pp. 8–17, October 1996.

[11] Steve Mann, Intelligent Image Processing, John Wiley and Sons,
November 2 2001, ISBN: 0-471-40637-6.

[12] S. Mann, “Comparametric equations with practical applications in
quantigraphic image processing,” IEEE Trans. Image Proc., vol. 9,
no. 8, pp. 1389–1406, August 2000, ISSN 1057-7149.

[13] F.M. Candocia and D. Mandarino, “A semiparametric model for
accurate camera response function modeling and exposure estima-
tion from comparametric data,” IEEE Transactions on Image Pro-
cessing, vol. 14, no. 8, pp. 1138–1150, August 2005, Avail. at
http://iul.eng.fiu.edu/candocia/Publications/Publications.htm.

[14] Corey Manders, ,” http://www.eyetap.org/∼corey/code.html.

[15] Gregory Ward Larson, “Logluv encoding for full-gamut, high-dynamic
range images,” Journal of Graphic Tools, vol. 3, no. 1, pp. 15–31, 1998.

IV - 168

