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ABSTRACT

In this paper, we present the structure and design method for a first-
order linear-phase filter bank (FOLPFB) which has unequal filter
lengths in its synthesis bank (UFLPFB). A FOLPFB is a general-
ized version of biorthogonal LPFBs regarding their synthesis filter
lengths. Ringing artifact is the main disadvantage of image coding
based on FOLPFBs. UFLPFBs can reduce the ringing artifacts as
well as approximate smooth regions well.

Index Terms— First-order linear-phase filter banks, biorthogo-
nal filter banks, unequal length filter banks, image coding.

1. INTRODUCTION

Image coding has been one of the most significant research topics
for a couple of decades. Filter banks (FBs) play an important role in
that area. They are used to remove spatial correlation and the sub-
band signals are quantized, coded and stored or transmitted. Several
FBs are known for efficient image coding such as the lapped orthog-
onal transform (LOT) [1], the biorthogonal linear-phase filter banks
(BOLPFBs) [2] and the variable-length lapped orthogonal transform
(VLLOT) [3]. All of these FBs are based on the motivations for
image coding described in [4] as follows:

• The synthesis lowpass filters should be smooth and have (anti)-
symmetric impulse responses.

• The filter coefficients should decay to zero at both ends.
• The highpass filters should have no DC leakage.
• The analysis FB should be chosen to maximize the coding
gain.

• The filters covering low/high-frequency bands should have
long/short supports.

• The filters should have good stopband attenuation.
Previous researches achieve some of these properties. For ex-

ample, the BOLPFB has high coding gain; the regular-BOLPFB [5]
has no DC leakage and smoother filters than others; and the VL-
LOT has long lowpass filters and short highpass filters called un-
equal length filters. All of them also have linear-phase filters which
yield (anti)symmetric basis functions. Furthermore, design costs are
desired to be as small as possible.

To design a FB, iteration of a nonlinear optimization is usu-
ally adopted. The optimization process depends on initial values
of the filter coefficients. Having a large number of free parameters

This work was supported by the Ministry of Education, Science, Sports
and Culture, Grant-in-Aid for JSPS Fellows.

often causes the optimization program to yield a local minimal so-
lution. Hence as the design freedom increases, the optimal solution
becomes difficult to obtain. Paraunitary FBs (PUFBs) are suitable
for reducing design freedom due to orthogonality. The LOT and the
VLLOT belong to this class.

However, none of them has all desired properties. The lack of
some properties generates distortions in reconstructed images. Well-
known, and particularly noticeable distortions are blocking and ring-
ing artifacts. The blocking artifacts occur due to short filters for
low-frequency regions with no overlap (the main disadvantage of
the DCT). The ringing artifacts appear around edges with high con-
trast because of long basis functions for high-frequency regions. Al-
though PUFBs are good for design costs, biorthogonal solutions are
generally better in the viewpoint of coding performance. To obtain a
solution which has lower design costs and higher performance is the
main objective of this paper.

The authors introduced the possibility to obtain better image
coding performance by using simplified first-order (FO) LPFBs [6].
This class of FBs is a generalized version of BOLPFBs where the
synthesis filter lengths can be longer than those of analysis filters [7].
Although this property is useful for image compression as mentioned
above, the design of FB with the short basis functions for the syn-
thesis highpass filters is still an unsolved problem. In this paper, we
propose FOLPFBs which have unequal length filters in their synthe-
sis banks (called UFLPFBs). Our proposed UFLPFB reduces the
ringing artifacts significantly as well as retaining high coding gain
and good perceptual visual quality in spite of having fewer design
parameters.

Notations: The identity matrix is I, the reversal matrix is J. For
simplicity, we omit vector or matrix sizes when they are obvious.

2. REVIEW

2.1. BOLPFBs

Consider anM -channel BOLPFB with filter lengthKM [2]. Fig. 1
shows a typical structure of a FB and its polyphase representation.
Using the lattice structure, the analysis polyphase matrix E(z) can
always be represented as

E(z) = GK−1(z)GK−2(z) . . .G1(z)E0. (1)

If perfect reconstruction is achieved, the causal synthesis polyphase
matrixR(z) is given as

R(z) = z−(K−1)E−1
0 G−1

1 (z)G−1
2 (z) . . .G−1

K−1(z). (2)
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WhenM is even, each matrix in (1) is represented as follows:

Gi(z) = ΦiWΛ(z)W, E0 =
1√
2

»
U0 U0J
V0 −V0J

–
(3)

whereΦi = diag(Ui,Vi) and

W =
1√
2

»
IM/2 IM/2

IM/2 −IM/2

–
, Λ(z) =

»
IM/2 0M/2

0M/2 z−1IM/2

–
.

If the M/2 × M/2 matrices Ui and Vi are nonsingular, the FB is
a BOLPFB. Furthermore, Ui for i > 0 can be set to Ui ≡ I for
simplicity without losing completeness [8].

2.2. FOLPFBs

In [7], the eigenstructure based characterization of M -channel BO-
LPFBs whose analysis filter lengths are 2M (they are called first-
order) and their synthesis ones are equal or longer than 2M was
presented. Its lattice structure of the analysis bank is

E(z) =diag(A1,A2)W
′
»
IM/2z

−1 − JF 0M/2

0M/2 JF z−1 − IM/2

–
× Wdiag(A3,A4)Wdiag(IM/2,JM/2) (4)

whereW′ = 1√
2

»
IM/2 −IM/2

IM/2 IM/2

–
. Each Ai (i = 1, . . . , 4) is an

M/2 × M/2 nonsingular matrix, and JF is anM/2 × M/2 block
diagonal with Jordan blocks of size bi (i = 0, . . . , n, bi is non-
increasing positive integer and

Pn
i=0 bi = M/2) with zero eigen-

value, respectively. For example, if M = 6 and {bi} = {2, 1},

JF =

2
4 0 1 0

0 0 0
0 0 0

3
5 .MoreoverR(z) is obtained as follows:

R(z) =z−b0diag(IM/2,JM/2)Wdiag(A−1
3 ,A−1

4 )W

×

2
66664
IM/2z +

b0X
i=2

J i−1
F zi 0M/2

0M/2 −IM/2 −
b0−1X
i=1

J i
F z−i

3
77775

× W′T diag(A−1
1 ,A−1

2 ). (5)

In this structure, some patterns of the synthesis filter length can be
permitted. IfM = 6, we can design a FOLPFB whose analysis filter
length is 2 × 6 = 12 and synthesis length is 12 (bi = {1, 1, 1}),
24 (bi = {2, 1}) or 36 (bi = {3}). For further information of
this class of FBs, please refer to the article [7]. Obviously, when
bi = {1, . . . , 1}, the obtained FB is a BOLPFB.

2.3. Simplified FOLPFBs

The authors proposed a simplified lattice structure of FOLPFBs [6]
as follows:

E(z) =diag(A10,A2)W
′
»
IM/2z

−1 − JF 0M/2

0M/2 JF z−1 − IM/2

–
× Wdiag(A3,A4)Wdiag(I,J). (6)

A10 is the part of the nonsingular matrix factorizationA1 = A10A11

where

A11 =

2
664

Sb0 Tb0×b1 . . .

Tb1×b0 Sb1

. . .
...

. . .
. . .

3
775 (7)
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Fig. 1. M -channel maximally decimated filter bank. (a) conven-
tional representation. (b) polyphase representation.

and

Sb =

2
66664

s0 s1 . . . sb−1

0 s0

. . .
...

...
. . .

. . . s1

0 . . . 0 s0

3
77775

Tl×m =

8>><
>>:

"
Sm

0(l−m)×m

#
l ≥ mh

0l×(m−l) Sl

i
m ≥ l

.

For example, in the case of bi = {2, 1, 1}, A10 can be repre-
sented as

A10 =

2
64

1 0 0 0
l0 1 0 0
l1 0 1 0
l2 0 0 1

3
75

2
64

1 0 0 0
0 α0 r0 r1

0 0 1 0
0 0 0 1

3
75 . (8)

The structure can reduce redundant parameters from traditional
FOLPFBs, and can be used despite of various patterns of bi’s. If
bi = {1, . . . , 1}, A11 has all parameters of A1. It is the same as
a simplified BOLPFB since A10 = I. It implies that the structure
covers other works presented in [8].

3. UFLPFBS

In this section, we propose a new FOLPFBs where the synthesis fil-
ters have unequal lengths (UFLPFBs). We consider a real-valued,
even-channel UFLPFB based on a simplified FOLPFB. To avoid
cumbersome calculations, bi = {2, 1, . . . , 1} is only considered in
this paper. However, the case is the essential of UFLPFBs, thus it
can be easily extended to other bi’s. The synthesis filters are divided
into three categories:
1. Long category; N0 filters with length 2b0M

2. Middle category; N1 filters with length 2M
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Fig. 2. Design example of an UFLPFB:M = 8, bi = {2, 1, 1}, the synthesis filter set is 3 × 32, 1 × 16 and 4 × 8.

3. Short category; (M − N0 − N1) filters with lengthM

where (N0 + N1) ≤ M .

3.1. Condition for the long category

First, we consider the condition for the longest synthesis filters. The
expanded filter length by JF corresponds to the long category. As-
sume that there are N00 symmetric and N01 antisymmetric filters
where (N00 + N01) = N0. For image coding application, |N00 −
N01| ≤ 1 is naturally defined since if |N00 −N01| > 1, it generates
shorter filters corresponding to lower frequency and longer filters
corresponding to higher frequency. Consequently, the condition is
described as follows:

8<
:
JF A−1

10 =
h
XM/2×N00 0M/2×(M/2−N00)

i
JF A−1

2 =
h
XM/2×N01 0M/2×(M/2−N01)

i (9)

where X denotes coefficients which can be ignored. In the bi =
{2, 1, . . . , 1} case, each of A10 and A2 has (M/2 − N00) and
(M/2 − N01) restricted parameters, respectively. For example, if
we desire an eight-channel UFLPFB with N00 = 2, both r0 and r1

in (8) have to be 0.

3.2. Condition for the middle and short categories

The number of filters in the middle and short categories depends on
each other, hence they can be considered jointly. Similar to the previ-
ous subsection, we assume that the UFLPFB hasN10 symmetric and
N11 antisymmetric middle filters with length 2M . The condition is
represented as

8<
:

(A−1
3 − A−1

4 )A−1
10 =

h
XM/2×(N00+N10) 0

i
(A−1

3 − A−1
4 )A−1

2 =
h
XM/2×(N01+N11) 0

i (10)

In this case, |N10 −N11| ≤ 1 and (N00 + N10) = (N01 + N11) =
Ns have to be satisfied from the existence condition described in [3].

The middle category has the following constraints:

(A−1
3 − A−1

4 ) =
ˆ
XM/2×Ns 0

˜
A10, A2 =

»
X 0Ns×(M/2−Ns)

X X

–
.

Note that the middle/short condition is independent of the long
one. Consequently, the overall restriction for UFLPFBs is repre-
sented as (Condition for long category)∪(Condition formiddle/short
category). The number of eliminable parameters depends on the fil-
ter set.

3.3. Particular property of UFLPFBs

Our proposed structure is partly similar to the traditional unequal
length structures with an additional property on the filter length. The
traditional FBs have to comply with the existence condition; i.e.,
the number of long and short filters has to be even [3]. However,
UFLPFBs could have odd number of filters in the long or middle
category since the long category only depends on the structure of
A10 or A2. There are two restrictions for those matrices; unequal
length condition (described in (9)) and invertibility. In other words,
they are independent of the existence condition proven in [3]. It is
the main difference from traditional unequal solutions. However,
the condition for UFLPFBs is remaining, i.e., both (N0 + N1) and
(M −N0 −N1) have to be even. The next section presents a design
example of an eight-channel UFLPFB whose synthesis filter set is
3 × 32, 1 × 16 and 4 × 8. It implies that N0 = 3, N1 = 1 and
(N0 + N1) = (M − N0 − N1) = 4.

4. DESIGN EXAMPLE AND IMAGE CODING
APPLICATION

In this section, a design example of an UFLPFB is shown. As pre-
viously mentioned, we design the eight-channel UFLPFB with bi =
{2, 1, 1}whose analysis length is 16 and synthesis filter set is 3×32,
1×16 and 4×8. The frequency and impulse responses of both banks
are shown in Fig. 2. The design objective function is the weighted
linear combination of the coding gain, the stopband attenuation and
the DC leakage [4]. The number of design parameters is 38. It is
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Table 1. Comparison of image coding results (PSNR in Decibels)
Transforms

Test Comp. 9/7 8 × 16 8 × 16/32 8 × 16/(32, 16, 8)
images ratio DWT BOLPFB FOLPFB UFLPFB

1:32 31.74 30.07 30.29 30.12
Lena 1:16 35.34 35.28 35.47 35.23

1:8 38.73 38.87 38.86 38.68
1:32 26.42 27.14 27.00 26.58

Barbara 1:16 30.11 31.26 31.20 30.77
1:8 34.72 35.95 35.82 35.46
1:32 23.30 23.48 21.88 22.92

Yogi 1:16 27.56 27.40 27.06 26.78
1:8 36.20 34.57 34.63 34.56

Fig. 3. Comparison of reconstructed images (1:32, portions of Yogi). From left to right: 9/7 DWT. 8 × 16 BOLPFB. FOLPFB. UFLPFB.

fewer than a simplified FOLPFB’s 54 (for the same bi) and an 8×16
BOLPFB’s 48. However, their coding gains are similar (around 9.60
dB).

The proposed UFLPFB is applied to image coding and com-
pared with the performance of other FBs included the 9/7 wavelet
transform (DWT) [4]. We designed another UFLPFB with bi =
{2, 1, 1}whose analysis length is 16 and synthesis filter set is 4×32,
2 × 16 and 2 × 8 for image coding. Its coding gain is 9.61 dB. We
coded each transformed image by the embedded zerotree wavelet
image codec presented in [9] for fair comparison. Coding results are
summarized in Table 1 and reconstructed images are shown in Fig. 3.
In PSNRs, the UFLPFB performs comparable to the traditional FBs.
In subjective performance, the DWT yields the “blurred” image and
the other traditional FBs generate the ringing artifacts. By contrast,
the UFLPFB yields less blurring and smaller ringing artifacts. The
fact means the UFLPFB is suitable for image coding.

5. CONCLUSION

In this paper, we presented the structure and design of UFLPFBs
for efficient image coding. UFLPFBs can have various filter length
sets due to their generalized structure for the synthesis filter lengths.
In image coding application, the proposed UFLPFB obtains better
perceptual visual quality as well as having fewer design parameters
than that in conventional FBs.
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