
HIGH DIMENSION LATTICE VECTOR QUANTIZER DESIGN FOR GENERALIZED
GAUSSIAN DISTRIBUTIONS

Leonardo Hidd Fonteles and Marc Antonini, Member, IEEE

I3S laboratory, CNRS and University of Nice-Sophia Antipolis
2000, route des Lucioles, B.P. 121, 06903 Sophia-Antipolis Cedex, France

E-mail: fonteles@i3s.unice.fr, am@i3s.unice.fr

ABSTRACT

LVQ is a simple but powerful tool for vector quantization and can
be viewed as a vector generalization of uniform scalar quantiza-
tion. Like VQ, LVQ is able to take into account spatial dependen-
cies between adjacent pixels as well as to take advantage of the n-
dimensional space filling gain. However, the design of a lattice vec-
tor quantizer is not trivial particularly when one wants to use vectors
with high dimensions. Indeed, using high dimensions involves lat-
tice codebooks with a huge population that makes indexing difficult.
On the other hand, in the framework of wavelet transform, a bit allo-
cation across the subbands must be done in an optimal way. The use
of VQ and the lack of non asymptotical distortion-rate models for
this kind of quantizers make this operation difficult. In this work we
focus on the problem of efficient indexing and optimal bit allocation
and propose efficient solutions.

Index Terms— Image compression, lattice vector quantization,
generalized gaussian distribution, bit allocation.

1. INTRODUCTION

Shannon theory implies that the performance of a vector quantizer
(VQ1) can come arbitrarily close to the theoretical optimal perfor-
mance if the vector dimension is sufficiently high. Unfortunately, the
computational complexity of an unconstrained code increases expo-
nentially with dimension. In addition, the storage requirements can
be very large. One solution to overcome this problem of dimension-
ality is to use some form of constrained VQ such as lattice vector
quantization (LVQ) [1]. LVQ is a simple but powerful tool for vector
quantization and can be viewed as a vector generalization of uniform
scalar quantization. Like VQ, LVQ is able to take into account spa-
tial dependencies between adjacent pixels as well as to take advan-
tage of the n-dimensional space filling gain [2]. Whatever the source
distribution is, LVQ will always outperform uniform scalar quantiz-
ers. Fast encoding and decoding algorithms making use of simple
rounding operations have been proposed by Conway and Sloane [1].
Consequently, the encoding and decoding speed does not depend on
the number of codewords within the codebook. Thus, lattice vector
quantizers offer the possibility of a substantial reduction in computa-
tional and storage complexity over unstructured full-search VQ de-
signed by the GLA algorithm [2]. Its computational simplicity and
dictionary robustness make it attractive and widely used in the lossy
data compression domain.

The design of an efficient LVQ is not so trivial, particularly if
one wants to use vectors with high dimensions and match the source
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1VQ will be used both for vector quantization and vector quantizer.

distribution correctly. Indeed, using high dimension vectors involves
lattice codebooks with a huge population that makes indexing diffi-
cult. On the other hand, in the framework of wavelet transform, a bit
allocation across the subbands must be done in an optimal way. The
use of VQ and the lack of non asymptotical rate-distortion models
for this kind of quantizers make this operation difficult.

In this work we focus on the problem of efficient indexing and
optimal bit allocation. The paper is organized as follows. In Sec-
tion 2 we introduce the principle of LVQ and some backgrounds.
Section 3 deals with the problem of indexing. In this section we pro-
pose an efficient solution to solve the indexing of huge LVQ code-
books. In Section 4, we propose an efficient approach for the bit
allocation. The proposed algorithm works efficiently whatever the
quantizer is (scalar quantizer, VQ, LVQ). Finally, Section 5 gives
some experimental results and we conclude in Section 6.

2. OVERALL CODING SCHEME

2.1. Principle

The global scheme of the proposed coder lies on the transformation-
quantization-compression conventional structure and is presented in
the Figure 1.

First of all, a discrete wavelet transform (DWT) is applied on
the data which is then split into different coefficient subbands. Then,
each of those coefficient subbands is scaled “independently” using a
different scaling factor γ. The resulting scaled coefficients are then
quantized using a LVQ. The optimal choice of γ for each subband
is guaranteed by an efficient resource allocation algorithm (see Sec-
tion 4 for details). As we will see in Section 2.2, in order to adapt the
lattice to the source distribution, each lattice vector is represented by
a product code depending on the statistic of the source to be quan-
tized as proposed by Fischer in [3]. Further details on the algorithm
are given hereinafter.

2.2. Lattice vector quantization

A lattice Λ in Rn is composed of all integral combination of a set of
linearly independent vectors ai (the basis of the lattice) such that:

Λ = {x|x = u1a1 + u2a2 + ...unan} (1)

where the ui are integers. The partition of the space is hence regular
and depends only on the chosen basis vectors ai ∈ Rm (m ≥ n).
Note that each set of basis vectors define a different lattice.

Due to the regularity of the lattice, all the lattice vectors with
constant lp norm are lying on concentric shells (or hyper-surfaces).
Then, it is possible to encode a given lattice vector using a prod-
uct code constructed by the concatenation of two indices [3]: the
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Fig. 1. Global coding scheme. p represents the shape factor of the generalized Gaussian distribution.

first one corresponding to the value of the vector norm ri (prefix)
and the second one corresponding to the position of the vector on
the given hyper-surface (suffix). The position of the vector on a
given hyper-surface can be found using an enumeration algorithm
[1, 3, 4]. Generally, the prefix of the product code is encoded us-
ing entropy coding (such as arithmetic coding) and the suffix us-
ing a fixed length coding, leading to the bit rate R computed as
R = −Pm−1

i=0 p(ri)[log2p(ri) − �log2N(ri)�], where p(ri) is the
probability of a given radius ri and N(ri) corresponds to the number
of vectors lying on a given hyper-surface obtained by the enumera-
tion algorithm. Such a product code ensures the unicity of decoding.

In the case of sources with generalized Gaussian distribution
with a shape parameter less than or equal one (like DWT coeffi-
cient sources), the superiority of the cubic Zn lattice over D4, E8 or
leech lattices has been established in [5]. This result demonstrates
the great interest in using a combined wavelet transform and a cu-
bic LVQ scheme. In the rest of the paper we will thus focus on the
design of a LVQ based on the cubic Zn lattice.

3. LATTICE VECTOR INDEXING

3.1. Challenge

VQ is known to give better rate-distortion performances than scalar
quantization [2]. Despite the idea behind LVQ be quite simple, it
is not the case for the implementation of the product code which
remains complex. Indeed, even if the computation of the prefix is
trivial, the suffix needs the enumeration and indexing of the lattice
vectors lying on a given hyper-surface. The regular indexing method
attributes an index to the suffix by taking into account the total num-
ber of vectors lying on a given hyper-surface (cardinality). This kind
of indexing was introduced by Fischer in [3] for the case of Lapla-
cian distributions and extended to generalized Gaussian distributions
by Villasenor in [6]. However, it is well known that the performances
of a vector quantizer increase with the vector dimension. In the case
of LVQ, increasing the dimension involves an increase of the cardi-
nality of the hyper-surfaces: for some space dimensions and norms,
one can have more than a billion lattice vectors lying on a given
hyper-surface! Furthermore, this number grows exponentially with
the norm. Then, enumeration and indexing of all the vectors can
become prohibitive using the algorithms of [3, 6].

A recent approach [7], exploits the leaders of a lattice. The
leaders of a hyper-surface correspond to few lattice vectors from
which all the other lattice vectors lying on the corresponding hyper-
surface can be derived by permutations and sign changes of their
coordinates. One must note that the number of leaders lying on a
given hyper-surface always remains lower than the cardinality of the
hyper-surface. The problem of enumeration of [3, 6] is then avoided.

3.2. Indexing based on leaders

The idea behind the method proposed in [7] is to create a suffix based
on the construction of a look-up-table and the use of geometrical
properties of lattices. This look-up-table contains the index of a few
number of vectors, called leaders, from which all the other vectors of
the hyper-surface can be assigned taking into account the symmetries
of the lattice geometry. These symmetries correspond to two basic
operations: changes of the sign of the vector coordinates and per-
mutations of the coordinates. The former one represents the change
of hyper-quadrant of the hyper-space in which the vector lies. In-
stead of indexing directly all the vectors over an hyper-surface, this
indexing method assign to each vector a set of three indices: one cor-
responding to its leader and the two other ones corresponding to its
permutation and the sign changes from the leader. For more details
in how to compute the permutation and sign indices, see [7].

In order to avoid a heavy computational complexity for indexing
the leaders and allowing a direct addressing of the leaders’ coordi-
nates, the authors of [7] proposed to construct a look-up-table of
dimension of the hyper-space containing all the leaders. This means
that for each norm and each lattice dimension, one should store a
tensor of high order n, e.g., n = 12, n = 60 or even more. In
addition, this tensor has much more “holes”2 than the real indices!
Indeed, in order to store in a same tensor leaders corresponding to
a same dimension and norm, most of the leaders that could be ad-
dressed by this table does not exist at all. Furthermore, to construct
this table, it is necessary to know or to generate all of the leaders,
which remains a complex operation.

For applications where many values of norms and dimensions
are necessary, as in the multiresolution data compression context,
handling a big amount of huge tensors is quite prohibitive for ex-
perimental purposes. In this paper we propose an alternative to this
problem while keeping a low-complexity algorithm.

3.3. Proposed indexing in the case of the l1 norm

3.3.1. Principle

The proposed algorithm classifies all the leader indices in such a way
that the indexing is no longer based on a greedy search algorithm
or direct addressing, but on low-cost enumeration algorithm which
just depends on the quantity of leaders instead of on the explicit
knowledge of all of them.

A hyper-pyramid of radius r and dimension n is composed by
all the vectors v such that ‖v‖1 = r. As said before, leaders are
the elementary vectors of a hyper-surface from which operations of
permutations and sign changes lead to all the other vectors lying
on this hyper-surface. Indeed, the leaders are vectors with positive

2We mean by “hole” a vector which belongs to the table but which is not
a leader.
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coordinates sorted in increasing (or decreasing) order. Therefore,
leaders for l1 norm are vectors which verify the conditions below:

1.

nX
i=1

vi = r;

2. 0�vi�vj , for all i < j.

3.3.2. Link with the theory of partitions

In the case of a l1 norm, one can note that the conditions given in
Section 3.3.1 are linked to the theory of partitions in number the-
ory [8]. Indeed, in number theory a partition of a positive integer
r is a way of writing r as a sum of d positive integers (also called
part). The number of partitions of r is given by the partition function
p(r) such that:

∞X
r=0

p(r)yr =

∞Y
d=1

„
1

1 − yd

«
, (2)

which corresponds to the reciprocal of the Euler’s function [8]. Fur-
ther mathematical development lead to representations of the p(r)
function that allow faster computation. Interested readers should re-
fer to [8].

For example, for r = 5, Equation (2) gives the result p(5) = 7.
Indeed, in this case, all the possible partitions are: (5), (1, 4), (2, 3),
(1, 1, 3), (1, 2, 2), (1, 1, 1, 2) and (1, 1, 1, 1, 1). Rewriting these
partitions as vectors like (0, 0, 0, 0, 5), (0, 0, 0, 1, 4), (0, 0, 0, 2, 3),
(0, 0, 1, 1, 3), (0, 0, 1, 2, 2), (0, 1, 1, 1, 2) and (1, 1, 1, 1, 1), we note
that they correspond exactly to the leaders of the hyper-pyramid of
norm r = 5 and dimension d = 5, i.e., they are the only vectors
which verify the 2 conditions in Section 3.3.1 for the hyper-pyramid
of norm r = 5 and dimension d = 5.

However, we are usually interested in shells of l1 norm equals
to r in a d-dimensional lattice with r �=d. In this case, one can use
the function q(r, d) [8] which computes the number of partitions of r
with at most d parts (in partition theory it is equivalent to the number
of partitions of r with no element greater than d with any number of
parts). Then, for a hyper-pyramid of norm r = 5 and dimension
d = 3, we have q(5, 3) = 5, i.e., five leaders given by: (0, 0, 5),
(0, 1, 4), (0, 2, 3), (1, 1, 3),and (1, 2, 2).

The function q(r, d) can be computed from the recurrence rela-
tion3 [8]:

q(r, d) = q(r, d − 1) + q(r − d, d), (3)

with q(r, d) = p(r) for d�r, q(1, d) = 1 and q(r, 0) = 0.

3.3.3. Using function q(r, d) to index the leaders

As we will see in the following, Equation (3) not only gives the total
number of leaders lying on a given hyper-pyramid but can also be
used to provide unique indices for these leaders. To illustrate the
principle of the proposed algorithm, let us suppose that the leaders
of a given hyper-pyramid have been classified in a lexicographical
order as:

Index value Leader
0 (0, ..., 0, 0, rn)
1 (0, ..., 0, 1, rn − 1)
2 (0, ..., 0, 2, rn − 2)
3 (0, ..., 1, 1, rn − 2)
...

...

3Note that there also exist closed forms for q(r, d) for the first few values
of d.

In this way, the index of a leader L corresponds to the number of
leaders that appear before it. For example, the leader (0, ..., 1, 1, rn−
2) should be assigned to index 3.

Consider a leader L = (x1, x2, ..., xn−1, xn) of dimension n
and norm rn =

Pn
i=1 xi. Since the leaders are sorted in a lexico-

graphical order, all the leaders with the largest coordinate gn verify-
ing xn + 1�gn�rn appear before L. The number of leaders with
largest coordinate equal to xn + t (t�1) and norm rn can be eas-
ily calculated using the function q of Equation (3) and is given by
q(rn − (xn + t), n − 1). Clearly, computing the number of leaders
with the largest coordinate equal to xn + t, with norm r = rn and
dimension d = n,is equivalent to calculate the number of leaders of
norm rn − (xn + t) with dimension n − 1.

By introducing the function q(r, d, k) which counts all he parti-
tions of a number r with at most d parts not greater than k, we can
show that the index of a leader can be computed using the following
formula:

IL =

n−2X
j=0

while xn−(j+1) �=0

min[xn−(j−1),rn−j ]X
i=xn−j+1

q(rn−j −i, n−(j+1), i),

(4)
with xn+1 = +∞ and q(0, d) = q(0, d, k) = 1. Note that, when
rn−j − i is less than or equal to i, q(rn−j − i, n − (j + 1), i) =
q(rn−j − i, n− (j +1)), because in that case all vectors counted by
q(r, n) are leaders.

3.4. Extension to the case of lp norm

In the case of lp norms with 0 < p � 2, the q-function given by
Equation (3) is no longer applicable. Indeed, the lp norm for a vector
v = (v1, v2, ..., vn) involves the computation of |vi|p which are not
necessarily integers. To circumvent this problem, one can round the
values |vi|p to their nearest integers with a given precision δ 4 and

introduces v̄i = round
“

|vi|p
δ

”
. The lp norm of a vector is then

known with a precision δ.

Let us now define qα
δ (r, d, k) the function which gives the num-

ber of partition of r ∈ Sp+
δ (where Sp+

δ is the set composed by all the
integers v̄i with vi ∈ Z+) with largest part equal to k. This function
is given by [9]:

qp
δ(r, d, k) =

kX
i=imin

qp
δ

„
r −

»
ip

δ

–
, d − 1, i

«
(5)

with qp
δ(0, 1, 1) = 1. The value imin is the lowest value of i ∈ Z

verifying
h

ip

δ

i
�

˚
r
d

ˇ
. Then, replacing q(r, d, k) in Equation (4)

by qp
δ(r, d, k) permits to assign an index to a leader L with lp norm

equal to r with precision δ.

3.5. Decoding a leader index

Let us suppose that the index IL of the leader to be decoded as well
as its lp norm r are transmitted to the decoder. Furthermore, let us
assume that the vector size d, the shape factor p as well as the pre-
cision δ are known at the decoder side. Then, since the first leader
of size d and norm r is always given by (0, 0, ..., 0, r), it is pos-
sible to easily retrieve the coordinates of the leader corresponding
to index IL using a counting algorithm as proposed for indexing in

4A similar approach was used in [6]
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Section 3.3. Indeed, the decoding algorithm must count the number
of leaders with largest coordinate xd varying from r down to �r/d�
while the index IL is not reached.

4. MODEL-BASED LVQ BIT ALLOCATION

4.1. Optimal bit allocation

To solve the problem of bit allocation, we propose to use a La-
grangian approach and to introduce the following Lagrangian func-
tional J(R, λ):

J(R, λ) =

MX
i=1

wiDi(Ri) − λ(

MX
i=1

aiRi − Rmax) (6)

where Di and Ri are respectively the distortion and the rate in each
subband i, and Rmax the rate budget. By imposing the zero-gradient
condition, the resulting optimal rate allocation vector R∗ = {R∗

i }M
i=1

must verify the following set of equations:

wi

ai

∂Di

∂Ri
(R∗

i ) = λ ∀i ∈ {1, . . . , M} (7)

where λ is the Lagrange multiplier. We can read (7) this way: the
optimal rates correspond to points having the same slope on the
“weighted” curves (Ri,

wi
ai

Di). Note that λ < 0 since the RD curve

are strictly decreasing. We proposed in [10] an efficient algorithm to
compute the values of Ri.

4.2. Model for D(R) curves

The method proposed in Section 4.1 not only requires the
knowledge of the RD curve of each subband, but also supposes that
these curves are differentiable, convex and accurate enough. The es-
timation of the RD curves is thus a crucial step. To that purpose, we
evaluate experimentally the quantizer (R,D) points located on the
convex hull of the RD function and distributed between an ad hoc
range of bitrates5. Then, these real RD curves are modeled using
smoothing B-Splines providing a continuous, convex and differen-
tiable analytical model for each RD function of each subband [10].
This approach can be seen as both data-driven and model-based.

5. EXPERIMENTAL RESULTS

The performances of the proposed method are evaluated for image
coding in the framework of discrete wavelet transform (DWT). The
LVQ is designed for a cubic Zn lattice for a generalized Gaussian
distribution (lp norm). In the case of lp norm, the shape parameter
p is estimated according to the DWT sub-band. The coding of the
lattice vectors uses a product-code with an arithmetic coding for the
vector norms. The leader indices are coded with a variable length
coding (with length depending on the population of each orbit or
class6), while fixed length coding is used for permutation and sign
indices. The size of the vectors across the different DWT sub-bands
are chosen such that a good bit allocation is obtained. In the follow-
ing example, the vector sizes are chosen in a range from 8 to 128.

At low bit rates the proposed method gives promising results
when compared to standard codec such as JPEG-2000 with contex-
tual arithmetic coding.

5The range depends on the bandwith of the subband, i.e., for high fre-
quency subbands small bitrates will be allocated while for low frequency
subband high bitrates will be allocated.

6The set of vectors having the same leader L is the orbit or class of L.
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6. CONCLUSION

In this paper we have proposed an efficient indexing solution for a
Zn lattice and for lp norms. The lp norms with 0 � p � 2 are
adapted to sources with generalized Gaussian distributions as DWT
sub-bands. In the proposed scheme, indexing a lattice vector is re-
duced to indexing its corresponding leader, a permutation and a sign
change. The number of leaders being smaller than the cardinality of
a hyper-surface, indexing a leader can be done even for huge vec-
tor sizes and codebook sizes, and doesn’t suffer from any computer
precision requirement or memory utilization. Furthermore, this ana-
lytical indexing is performed without the need of any look-up-table
(as was proposed in [7]). Experimental results are promising.
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