
DCT COEFFICIENT PREDICTION FOR JPEG IMAGE CODING

Gopal Lakhani

Texas Tech University, Lubbock Texas, 79409-3104, USA
(lakhani@cs.ttu.edu)

ABSTRACT
The JPEG baseline algorithm follows a block-based coding
approach and therefore, it does not explore source redun-
dancy at the sub-block level. This note explores correlation
between adjacent rows (or columns) at the block boundaries
for predicting DCT coefficients of the first row/column of
DCT blocks. Experimental results show that our prediction
method reduces the average JPEG DC residual by about
75% for images compressed at the default quality level. The
same for AC01/10 coefficients is about 30%. It reduces the
final code bits by about 4.55% of the total image code for
grey images. Our method can be implemented as a part of
the JPEG codec without requiring any changes to its con-
trol structure or to its code stream syntax.
Keywords - Image coding, DCT, prediction methods, JPEG

1. INTRODUCTION

The JPEG baseline algorithm, [1], follows a block-based

compression approach. It divides the input image into 8x8

pixel blocks, transforms each block using DCT, and then

codes the DC and AC coefficients. To reduce redundancy

due to correlation between pixels of adjacent blocks, it pre-

dicts only the DC coefficient. For intra-block redundancy,

it only quantizes the DCT coefficients and does not use pre-

dictive coding. In other words, it explores spatial redun-

dancy at the block level and not at the pixel level. Conse-

quently, the JPEG algorithm leaves a fair amount of spatial

redundancy unexplored. In this note, we consider correla-

tion between adjacent rows and/or columns at block bound-

aries and develop a new method for DCT coefficient predic-

tion. The problem is that DCT coefficients of different fre-

quencies are mutually independent, but the prediction resid-

ual of a coefficient must be expressed in terms of coeffi-

cients of other frequencies in order to compute the residuals

in the transform domain. We overcome this difficulty. The

main attraction of our method is that it can be implemented

without requiring any changes to the JPEG codec structure

or to the JPEG code bit stream syntax.

DCT restoration has been studied widely in context of

variety of still image and video compression problems such

as blocking artifact reduction, image resizing, and transmis-

sion error recovery. However, most of these studies can

not be used for DCT prediction due to the following con-

straints. (1) A JPEG codec must compute prediction residu-

als in the raster-scan order of blocks and therefore, only two

sides of a block are accessible for DCT prediction (block-

ing reduction methods consider all four sides). (2) A JPEG

codec must use only the DCT coefficients and not pixels of

a block for prediction. The reason is that the JPEG standard

does not require any specific implementation of discrete co-

sine transform in order to avoid different DCT implementa-

tions reconstructing pixels of subsequent blocks differently.

(3) A JPEG prediction algorithm must use the same com-

putation for all blocks, because the JPEG standard has no

provision for coding any control information for individual

blocks. Therefore, we review literature on the DCT predic-
tion problem only.

A prediction method for block-based coding scheme must

explore spatial redundancy at one of the following three lev-

els: pixel level, row/column level, or block level. JPEG re-

duces spatial redundancy at the block level and uses only

DC coefficient prediction for this purpose. MPEG-4 also

explores at the block level, but it predicts both DC and AC

coefficients. [2] proposes the following adaptive prediction

method for MPEG-4. Let C, B, A and X denote blocks of

a 2x2 block array shown in Fig. 1, where C, B and A are

already coded and X is to be coded next.

if (|DC(A)−DC(C)| < |DC(C)−DC(B)|)
pred(DC(X)) = DC(B)

else pred(DC(X)) = DC(A) (1)

If A is the source for DC prediction, it tests the following

AC prediction criterion:(
7∑

i=1

|ACX
i,0| −

7∑
i=1

|ACX
i,0 −ACA

i,0|
)

> 0 (2)

If (2) holds, a ACpred flag is set in the macro-block header

and only the first row AC coefficients of X are predicted

from the co-located first row AC coefficients of B. H.263+

also uses this method. We can not use this approach for

JPEG algorithm, because there is no provision of any flags

in the JPEG code syntax for individual blocks.

IV - 1891-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

7 0 70

0
7

XA

BC

Fig. 1. Exploring inter row/column redundancy for DCT

H.264/AVC is a recent standard for video coding [3].

It applies predictive coding in the pixel domain. This is

possible, because its block transformation is reversible and

therefore, H.264 decoder can recreate the original pixels of

the image without any losses from the given transform co-

efficients. Another major difference is that H.264 computes

correlation between boundary pixels in nine different ways

and codes the best choice as an extra information for each

block. Yet another major difference is that H.264 applies

prediction mostly for 4x4 pixel blocks to get maximum ad-

vantages. Obviously, none of these ideas can be explored in

the JPEG algorithm due to restrictions noted above as (1)-

(3).

An alternative is to explore correlation between the DCT

coefficients of the same frequency only, i.e., construct sub-

band images each comprising of a single frequency coeffi-

cient (e.g., AC01) and explore predictive coding for subband

images. [4] uses this approach for exploring inter-block re-

dundancy, but they use bit-plane entropy coding algorithm,

not followed in the JPEG algorithm. [5] gives a constructive

method for estimating AC coefficients in the DCT domain.

In this note, we explore spatial redundancy at the row/column

level. We first predict the AC coefficients and then use them

to predict the DC coefficient. The core of our prediction

method is to explore similarities between adjacent rows or

columns at the boundary of X with A and B in terms of

1-D DCT coefficients of these rows or columns and then

express them in terms of 2-D DCT coefficients of X , A, or

B. Section II presents our prediction equations, and Section

III presents experimental results on reduction in the aver-

age coefficient size and in the final code size. Experimental

results show that our method obtains huge reductions; for

example, we reduce the average JPEG DC residual by 75%

and AC01 (AC10) residuals by 30%.

2. DCT PREDICTION

We compressed eleven widely used test images at the de-

fault quantization level. A montage of these images except

Lena is given in Fig. 2. The average size of DCT coeffi-

cients for all positions (i, j) : 0 ≤ i, j ≤ 7, computed by

100 ∗ |DCTi,j |/(
∑7,7

p,q=0,0 |DCTp,q|), is given in Table I;

Table I - Average DCT coefficient size
0 1 2 3 4 5 6 7

0 16.2 15.5 8.4 3.2 1.4 0.5 0.2 0.1

1 13.7 7.4 4.0 1.9 0.9 0.2 0.1 0.0

2 5.3 3.8 2.7 1.2 0.5 0.2 0.0 0.0

3 3.2 1.8 1.2 0.6 0.2 0.1 0.0 0.0

4 1.6 1.0 0.4 0.2 0.0 0.0 0.0 0.0

5 0.8 0.4 0.1 0.1 0.0 0.0 0.0 0.0

6 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0

7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DCT0,0 is differentially coded. The table shows that about

60% of the block energy is stored in just five coefficients,

DC, AC01, AC10, AC02, and AC20. Also, any image con-

tinuity in the horizontal and/or vertical direction between

adjoining blocks is absorbed in the first row/column DCT

coefficients only. Hence, we concentrate on the prediction

of these five coefficients only.

2.1. Computing 1-D DCT from 2-D DCT

Let Cu,x = c(u) cos((2x + 1)uπ/16) denote the basis ele-

ments of the discrete cosine transform, where 0 ≤ x, u ≤ 7,

c(0) = 1/(2
√

2), and c(u) = 1/2 for u �= 0. Let {fx,y :
0 ≤ x, y ≤ 7} denote the pixels of an image block f and

{Fu,v : 0 ≤ u, v ≤ 7} denote its DCT block. Then

Fu,v =
7∑

y=0

(Cv,y

7∑
x=0

fx,yCu,x). (3)

The DCT is an unitary orthogonal transform. Conse-

quently,
7∑

x=0

Cu,xCv,x =
{

0 u �= v
1 u = v.

(4)

Rewriting (3) using (4),

7∑
y=0

Fu,yCv,y =
7∑

x=0

fx,vCu,x (5)

We interpret (5) by stating that the uth 1-D DCT coeffi-

cient of a column (row) of an image block can be computed

from the uth row (column) of the 2-D DCT of that block.

2.2. Our DCT prediction equations

Let xi,j denote pixels and Xu,v denote the 2-D DCT coeffi-

cients of the block X , where 0 ≤ i, j, u, v ≤ 7. Let X
(v,−)
u

and X
(−,v)
u denote the uth 1-D DCT coefficient of the vth

row and column of X , respectively. Let Au,v, A
(v,−)
u , A

(−,v)
u ,

Bu,v, B
(v,−)
u , and B

(−,v)
u be defined likewise for blocks A

and B, respectively. Adjacent pixels in a typical photo-

graphic image are mostly similar. Therefore, there should

IV - 190

Fig. 2. Our test images

exist significant similarities between column 7 of A and col-

umn 0 of X and between row 7 of B and row 0 of X (see

Fig. 1). Consequently, A
(−,7)
u and X

(−,0)
u are likely to be

close, especially for small u. Using (5) and that cos(15uπ/16) =
(−1)ucos(uπ/16), 0 ≤ u ≤ 7, the difference between the

two coefficients is

(X(−,0)
u −A(−,7)

u) =
7∑

y=0

(Xu,yC0,y −Au,yC7,y)

=
7∑

y=0

(Xu,y − (−1)yAu,y)C0,y

2
√

2(X(−,0)
u −A(−,7)

u) = (Xu,0 −Au,0)+

√
2

7∑
y=1

(Xu,y − (−1)yAu,y)cos((2y + 1)uπ/16)(6)

Since the JPEG entropy encoder codes only integer data

and that the encoder and the decoder must compute the same

prediction, (6) should be expressed for integer domain arith-

metic. We multiply the cosine terms by a large integer 213

and truncate them to the nearest integers.

pD = (Xu,0 −Au,0) + (
7∑

y=1

(Xu,y − (−1)yAu,y)Iy)/213

(7)

where I = {11363, 10703, 9633, 8192, 6436, 4433, 2260}.
Note that this simplification of (6) has no impact on the de-

coded value of Xu,0, because both the encoder and decoder

apply the same formulation (7). The predictive residual,

pD, is generally close to 2
√

2(X(−,0)
u −A

(−,7)
u) (our codec

does not compute this 1-D DCT difference; it is given to

interpret pD.).

The first row coefficient X0,u is predicted similarly us-

ing B in place of A and interchanging row and column pre-

fixes in (7).

It is easy to verify that use of (7) causes no losses, i.e.,

our predictive coding is lossless. Moreover, it computes pre-

diction in the transform domain. It essentially captures the

low-frequency difference left out by taking (Xu,0 − Au,0)
from the difference of the column 0 pixels of X from col-

umn 7 pixels of A and represents it in terms of higher fre-

quency AC coefficients. This is the main contribution of this

paper. (6) is formulated to explore inter-block redundancy.

For intra-block redundancy reduction, it can be reformu-

lated to compute differences between columns (or rows) of

the same block.

Our codec works as follows. The encoder codes the in-

terior AC coefficients Xu,v, u > 0, v > 0, directly (no

prediction). It codes pD in place of Xu,0, u > 0 for the

first column AC coefficients. For X0,0, there is a choice

because it can also be predicted using the first row AC coef-

ficients X0,v, v > 0. Our encoder codes the average of the

two predictions to take the advantage of pixel correlation in

both directions. The decoder first restores Xu,0 and X0,u

for u > 0, because it can compute the second term of the

right side of (7); note that Xu,y and Au,y are known to the

decoder for u > 0, y > 0. The decoder restores X0,0, at the

end.

3. EXPERIMENTAL RESULTS

We used images of Fig. 2 for performance evaluation of our

prediction method. Name and size of these images are given

in Columns 1-2 of Table II in the same order as shown in

Fig. 2. Three sets of experimental results are given to mea-

sure advantages of our method over the JPEG algorithm.

Results for AC01 and AC10 are given together (same with

AC02 and AC20), because their semantic is same. (7) was

applied to quantized DCT coefficients. Results were com-

puted only for quality level 75. The reason is that JPEG

multiplies defaults quantizers by a scalar factor to compute

quantizers for other quality levels and since (7) is linear, the

prediction residuals would reduce by the same factor and

IV - 191

Table II - Comparing with JPEG DCT coding
DCT Coeff. ratio Code size ratio % code

Image Size DC AC01/10 AC02/20 DC AC01/10 saving

1 2 3 4 5 6 7 8

Peppers 512x512 0.2085 0.5152 0.8300 0.6691 0.8494 5.49

Mandrill 512x512 0.6429 1.2775 1.6723 0.8903 1.0641 0.60

Tiffany 512x512 0.2838 0.6799 0.9001 0.6851 0.9020 4.31

Elaine 512x512 0.1991 0.6120 0.9200 0.6542 0.8955 4.68

Goldhill 720x576 0.4225 0.6620 0.8805 0.8060 0.9238 3.25

Girl 720x576 0.2743 0.6840 0.9005 0.7095 0.9109 4.53

Zelda 720x576 0.1923 0.4750 0.8500 0.6181 0.8184 10.16

Barbara 720x576 0.3346 0.9023 1.2301 0.7608 0.9578 2.60

Monarch 768x512 0.2323 0.6140 0.8342 0.6602 0.8943 5.47

Tulips 768x512 0.2290 0.6070 0.6401 0.6976 0.9552 4.31

Lena 512x512 0.2028 0.6585 0.8701 0.6617 0.8957 4.76

Average 0.2929 0.6988 0.9038 0.7120 0.9152 4.55

we would obtain the same reduction ratios.

Columns 3-5 of Table II give the first set of results. Col-

umn 3 shows the ratio of our DC residuals with the JPEG

DC residuals. The average of this column is 0.2929, which

means that (7) reduces the average JPEG DC residual by

about 71%; it is a phenomenal reduction. Columns 4 and

5 gives ratio of predicted coefficients with the original AC

coefficients. (7) reduces the AC01 and AC10 coefficients by

about 30% on the average. Note that AC coefficients depend

more on the contents of the block and much less on the sur-

rounding block pixels in comparison to the DC coefficient.

It is the reason that our prediction residuals of AC01/10 are

larger than the original coefficients for Mandrill, because

there is practically no correlation between adjacent pixels.

Still a 30% reduction is excellent and prediction coding of

AC01 and AC10 is desired because together they constitute

about 29% of the total image energy (see Table I).

Columns 6-7 give the second set of results and report

the ratio of the code size of the DC and AC01/10 with the

JPEG code size of same frequency, respectively. We used

the JPEG arithmetic coding [6] because it is more suited for

code size comparison than the Huffman coding due to the

following two reasons: (1) since distribution of residuals is

different from the original DCT coefficients, we should not

use the same Huffman code tables, and (2) the arithmetic

coding is adaptive. Before reporting savings of our method,

we first present an estimation of the reduction in the entropy.

Our experiments show that the average code size per JPEG

DC residual is 6.35 bits, including the sign bit. It means that

a 70% reduction to the average JPEG DC residual should

reduce its code size by 1.8 bits and we should expect a re-

duction of about 1.8/6.35 ≈ 28.3% in the JPEG DC code

size. The average of Column 6 is 0.7120, which means that

our method generates about 28.8% smaller DC code than

JPEG; it matches with our estimation. Column 7 shows that

average reduction in the code size of AC01/10 coefficients

in about 8.5%, which is still significant. The reduction in

the AC02/20 code size is quite small (just 1.2%) and hence

it is not reported for individual images.

To summarize, this note shows that at the expense of

a few additional arithmetic operations, we can predict sig-

nificant DCT coefficients easily to reduce the image code

size. Our last set of results (given in column 8 of Table

II) shows that on the average, we can save about 4.55% of

the total image code size. This saving should be judged

considering that our method does not incur any losses to

DCT coefficients, we require no changes in the JPEG struc-

ture and that lossless predictive coding gains are typically

very small. Note that we can not apply any pixel-level pre-

diction approach like H.264 for JPEG coding. Hence, the

row/column based prediction is the next best option, devel-

oped in this note.

4. REFERENCES

[1] W. B. Pennebaker, & J. L. Mitchell, JPEG Still Image
Data Compression Van Nostrand Reinhard, New York
(1993).

[2] A. Puri, R. L. Schmidt, & B. G. Haskell, ”Improve-
ments in DCT based video coding,” Proc. SPIE, vol.
3024, pp. 676-688, Feb. 1997.

[3] G. J. Sullivan & T. Wieland, ”Video Compression
- From concept to the H.264/AVC standard”, Proc.
IEEE, vol. 93, pp. 18-35, Jan. 2005.

[4] C. Tu, & T. D. Tran, ”Context-based entropy coding of
block transform coefficients for image compression,”
IEEE Trans. Image Proc., Vol. 11, pp. 1271-84, Nov.
2002.

[5] G. A. Triantafyllidis, D. Tzovaras, & M. G. Strintzis,
”Blocking artifact detection and reduction in com-
pressed data”, IEEE Trans. Circuits Sys. Video Tech.,
vol. 10, pp. 877-890, Oct. 2002.

[6] G. Vollbeding, ”JPEG Arithmetic coding Software,”
1998 (http://sylvana.net/jpeg-ari/).

IV - 192

