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ABSTRACT

The performance of image interpolation depends on an
image model that can adapt to nonstationary statistics of nat-
ural images when estimating the missing pixels. However,
the construction of such an adaptive model needs the knowl-
edge of every pixels that are absent. We resolve this dilemma
by a new piecewise 2D autoregressive technique that builds
the model and estimates the missing pixels jointly. This task
is formulated as a non-linear optimization problem. Although
computationally demanding, the new non-linear approach pro-
duces superior results than current methods in both PSNR and
subjective visual quality. Moreover, in quest for a practical
solution, we break the non-linear optimization problem into
two subproblems of linear least-squares estimation. This lin-
ear approach proves very effective in our experiments.

Index Terms— Image interpolation, autoregressive pro-
cess, optimization, soft decision.

1. INTRODUCTION

With ever increasing computation power in image and video
processing, more sophisticated adaptive image interpolation
methods were proposed in recent years. To preserve direc-
tional information, Li and Orchard proposed a technique of
estimating the covariance of high resolution image from the
covariance of the low resolution image, and aWiener-filtering
like interpolation scheme based on the estimated covariance
[1]. Muresan and Parks [2] cast the method of [1] into the
light of adaptive optimal recovery, and proposed a general ap-
proach to image interpolation.

The reproduction quality of any image interpolation algo-
rithm primarily depends on its adaptability to varying pixel
structures across an image, which is the central theme of this
paper. In fact, modeling of non-stationarity of image sig-
nals is a common challenge facing many image processing
tasks, such as compression, restoration, denoising, and en-
hancement. We had a measured success in this regard in a
research on predictive lossless image compression [3]. In that
work a natural image is modeled as a piecewise 2D autore-
gressive process. The model parameters are estimated on the
fly for each pixel using sample statistics of a local window,

assuming that the image is piecewise stationary. In this work
we take a similar approach to image interpolation. An obvi-
ous difference is in that the sample set for parameter estima-
tion has to be causal to the current pixel for compression, but
does not need to be for interpolation, which is to the advan-
tage of the latter. On the other hand, for image interpolation
the fit of the model to true sample statistics is made far more
difficult by the fact that only a low-resolution version of the
original can be observed.

Now the problem on hand is one of chicken and egg. Cor-
rect interpolation of missing pixels relies on a good model,
whereas the model parameters can be reliably estimated only
if the missing pixels are known. The main innovation of this
work is a new image interpolation technique that combines
the two tasks of estimating the model parameters and inter-
polating the missing pixels with the estimated model. The
joint estimation aims to achieve the maximum possible sta-
tistical agreement between estimated model parameters and
the interpolated pixels, constrained by known low resolution
pixels. This idea is formulated into a non-linear optimization
problem with model parameters and missing pixels both as
variables. By solving the optimization problem, we obtained
high resolution images of quality superior to the best of the
existing techniques.

2. PIECEWISE STATIONARY AUTOREGRESSIVE
MODEL

For the purpose of adaptive image interpolation, we model the
image as a piecewise autoregressive (PAR) process:

X(i, j) =
∑

(m,n)∈T

a(m,n)X(i + m, j + n) + υi,j (1)

where T is the spatial template for the regression operation.
The term υi,j is a random perturbation independent of spa-
tial location (i, j) and the image signal, and it accounts for
both fractal-like fine details of image signal and measurement
noise. The validity of the PAR model henges on a mecha-
nism that adjusts the model parameters a(m, n) to local pixel
structures. The fact that any semantically meaningful image
constructs, such as edges and surface textures, are formed by
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spatially coherent contiguous pixels, suggests piecewise sta-
tistical stationarity of the image signal. In other words, in the
setting of the PAR model, the parameters am,n remain con-
stant in a small locality, although they may and often do vary
significantly in different segments of a scene.

The validity of the PAR model with locally adaptive pa-
rameters is corroborated by the success of this modeling tech-
nique in lossless image compression. Among all known loss-
less image coding methods, including CALIC, TMW [4], and
invertible integer wavelets, those that employ the PAR model
with adjusted parameters on a pixel-by-pixel basis have deliv-
ered the lowest lossless bit rates [3,5]. In the principle of Kol-
mogorov complexity, the true model of a stochastic process is
the one that yields the minimum description length. Thus we
have strong empirical evidence to support the appropriateness
and usefulness of the PAR model for natural images.

3. NON-LINEAR OPTIMIZATION APPROACH TO
IMAGE INTERPOLATION

Let Ih be the high resolution (HR) image to be estimated by
interpolating the low resolution (LR) image Il observed. The
LR image Il is a down sampled version of the HR image Ih

by a factor of two. Let xi ∈ Il and yi ∈ Ih be the pixels
of images Il and Ih respectively. We write the neighbors of
pixel location i in the HR image as yi−t, t = 1, 2, · · · . Since
xi ∈ Il implies xi ∈ Ih, we also write an HR pixel yi ∈ Ih as
xi (likewise, yi−t as xi−t) when it is in the LR image, yi ∈ Il,
as well.

For operational reasons to be self-evident shortly, we in-
terpolate the missing HR pixels in two passes. In the first
pass, we interpolate those HR pixels yi ∈ Ih whose four 8-
connected neighbors are known LR pixels xi−t ∈ Il, t =
1, 2, 3, 4. This configuration is depicted in Fig. 1(a). Using
the PAR image model introduced in the preceding section,
we pose the interpolation problem as one of non-linear opti-
mization:

min
a,y

{∑
i∈W

∥∥∥yi −
4∑

t=1

atxi−t

∥∥∥ +
∑
i∈W

∥∥∥xi −
4∑

t=1

atyi−t

∥∥∥
}

.

(2)
Fig. 1(b) depicts the sample relationships involved in (2).

Now let us explain the rationale of (2). To apply the PAR
model to interpolation, we face the challenge of having to
estimate the model parameters a ∈ �4 from an incomplete
data set (three-quarters of the pixels are missing). On one
hand, the interpolation needs a good model that fits the true
HR data. On the other hand, the model parameters can be
reliably estimated only if the missing HR pixels are known.
These two interdependent tasks of estimating the model pa-
rameters and interpolating the HR pixels with the estimated
model present a chicken-and-egg dilemma. We circumvent
the dilemma by treating model parameters a and the miss-
ing HR pixels y both as variables in the optimal estimation
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Fig. 1. (a) Spatial configuration in first pass. (b)PAR model
parameters a = (a1, a2, a3, a4) in relationship to spatial cor-
relations of pixels.
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Fig. 2. Spatial configuration in second pass.

scheme of (2). This allows us to estimate a and y jointly un-
der the constraint of the known LR image Il. The optimiza-
tion objective is to obtain the best statistical fit between the
estimated model and the interpolated pixels. For this reason
(2) requires the PAR model of the same parameters a ∈ �4

to not only fit yi ∈ Ih with {xi−t ∈ Il}1≤t≤4, but also fit
xi ∈ Il with {yi−t ∈ Ih}1≤t≤4. If the image signal is autore-
gressive and stationary in the small local window W , which
is fortunately true or a good enough approximation for most
natural images, then the proposed approach is well grounded.

Once the missing HR pixels in the first pass are interpo-
lated, we obtain half of the HR pixels. The remaining missing
HR pixels are to be interpolated in the second pass. The inter-
polation problem in the second pass is essentially the same
as the one just discussed. The only difference is that we
interpolate the missing HR pixels yi ∈ Ih using their four
4-connected neighbors, which are either known in Il or esti-
mated in the first pass. The problem has the same formulation
of non-linear optimization as in (2), if we simply rotate the
spatial configuration of Fig. 1(a) by 45 degrees (see Fig. 2).

Autoregressive data fitting is a common technique in many
image interpolation techniques [1, 2]. The distinctive advan-
tage of the proposed non-linear optimization approach over
the existing linear regression methods is that the former builds
the adaptive autoregressive model using LR and estimated
HR data in conjunction, whereas the latter methods train the
model with LR data only.

However, with the new approach, the problem solution no
longer has a closed form as in least-squares estimation. An
iterative method, such as gradient descent, is needed to solve
(2). And the solution may not be globally optimal since the
objective function is not convex. Extra cares should be taken
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to expedite the convergence of the iterative method and to en-
sure a good solution. A high quality initial solution (a0,y0)
can make the gradient descent method converge quickly to a
good solution. One possibility is to use the fast bicubic inter-
polation to compute y0 and then compute a0 from y0 using
linear least-squares estimation.

In order to avoid poor locally optimal solutions in solving
(2), one should add constraint(s) or a regularization term to
(2) whenever possible. This is to incorporate into (2) useful
domain knowledge about the HR pixel to be interpolated. For
instance, in the presence of edges, which can be detected from
the LR image, we can impose a smoothness constraint in the
edge direction.

4. LINEAR LEAST-SQUARE SOFT-DECISION
SOLUTIONS

The computational cost of the above non-linear optimal image
interpolation approach is high. In quest for a more practical
solution, we develop approximate algorithms in this section.
The difficulty in solving (2) lies in its non-linearity. But the
objective function of (2) will reduce to linear in its variables,
if the PAR model parameters a can be estimated ahead of
time. Guided by this observation, we work out an efficient
solution by breaking the optimization problem of (2) into two
linear least-square subproblems.

First, we determine the model parameters a by the fol-
lowing linear least-squares estimation:

â = arg min
a

⎧⎨
⎩

∑
i∈W

∥∥∥xi −
∑

1≤t≤4

atxi−t

∥∥∥
2

⎫⎬
⎭ (3)

where xi−t are the four 8-connected neighbors of the location
i in Il as labeled in Fig. 3.

By plugging estimates â into (2), we finally estimate the
missing HR pixels by solving another linear least-square prob-
lem

ŷ = arg min
y

{∑
i∈W

∥∥∥yi −
∑

1≤t≤4

âtxi−t

∥∥∥
2

+
∑
i∈W

∥∥∥xi −
∑

1≤t≤4

âtyi−t

∥∥∥
2

} (4)

In the above derivations to simplify the algorithm we as-
sumed that the second order statistics of LR image Il and HR
image Ih are sufficiently similar in the local windowW . The
same assumption was made by the interpolation method of
Li and Orchard [1]. They justified this assumption for the
case where an edge exists in the local windowW . But the ap-
proach of [1] is fundamentally different from ours. In [1] once
the parameters of the interpolation filter are determined sim-
ilarly to (3), each missing pixel is interpolated independently

xi−1 xi−2

xi−3 xi−4

xi

â1 â2

â3 â4

Fig. 3. Sample relations in estimating model parameters a.

from others, which can be characterized as hard-decision es-
timation. In contrast, we adopt a soft-decision estimation ap-
proach. Rather than making one estimate at a time in isola-
tion, the objective function (4) accounts for the mutual influ-
ences among estimates of neighboring missing pixels. These
estimates are jointly optimized in the least squares sense in a
local window W so that the PAR model fits all pixels in W ,
regardless from Il or Ih.

Experiments show that the edge-based interpolation method
of [1] is prone to artifacts on spatial features of high curva-
ture, for which the second order statistics may differ from
LR to HR images. In such cases the soft-decision estimation
strategy makes the proposed interpolation approach consider-
ably more robust. Also, several variants are possible in the
framework of soft-decision estimation to make the interpola-
tion more adaptive.

5. EXPERIMENTAL RESULTS AND REMARKS

The two proposed image interpolation methods, the one of
non-linear optimization and the one of linear least squares
(LLS) soft-decision approach, were implemented and com-
pared with two other methods: cubic convolution interpo-
lation [6], and edge oriented interpolation [1]. Experiments
were conducted on a number of test images often used in the
literature, such as Lena (from the JPEG test set) and Bike
(from the Kodak test set). As expected, the visual differences
of the tested algorithm were exhibited in areas of high fre-
quency contents such as edges and fine textures. Fig. 4 and
Fig. 5 are parts of the Lena and Bike images, both original
and the interpolated versions by the tested methods. It ap-
pears that the edges reconstructed by the two newmethods are
sharper with much less ringing and aliasing than other meth-
ods, contributing to superior visual quality. The difference
between the non-linear optimization and the least-square soft-
decision methods is small in both visual quality and PSNR.
Given its much lower complexity, the latter method should be
preferred in practice.

The non-linear optimization method has a very interesting
property that can be beneficial for some applications. It tends
to enhance or exaggerate fine details. One can see this by
observing the bottom contour of the eye and the eye lashes in
Lena images reconstructed by different methods.

The PSNR results for the test images are presented in Ta-
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(a) Original (b) Method in [1]

(c) Proposed LLS method (d) Proposed nonlinear method

Fig. 4. Parts of original and reconstructed Bike images.

ble 1, which shows clear advantage of the new methods.

Image Bicubic Method [7] Method [1] Proposed LLS
Lena 33.85 32.99 33.79 34.58
Parrot 32.94 32.45 32.63 33.31
Bike 25.40 25.26 25.83 27.00
Flight 29.11 30.50 30.83 31.56

Table 1. The PSNR(dB) results
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(c) Bicubic Convolution (d) Bicubic Convolution

(e) Method in [1] (f) Method in [1]

(g) Proposed LLS method (h) Proposed LLS method

(i) Proposed nonlinear method (j) Proposed nonlinear method

Fig. 5. Parts of original and reconstructed Lena and Bike im-
ages.

IV - 196


