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ABSTRACT

We introduce a new approach to Resolution Synthesis which is
specifically matched to the interpolation problem. This is achieved
by explicitly aligning classification and subsequent interpolation ac-
tivities with image models conducive to interpolation. Our image
models are pre-determined rather than discovered and represent a
range of edges of arbitrary orientation, profile and relative position.
We demonstrate superior interpolation outcomes compared to statis-
tical classification based resolution synthesis.

Index Terms— Image processing, Interpolation, Resolution
Synthesis

1. INTRODUCTION

Resolution Synthesis (RS) describes a class of algorithms that aim
to estimate a higher resolution image, given a single low resolution
instance of the same image. Resolution Synthesis fits within the
broader class of problems known as “Inverse Problems in Imaging,”
which includes related ill-posed inverse problems such as super-
resolution, deblurring, denoising and other restoration objectives.
While various approaches to resolution synthesis have been pro-
posed [1, 2], in this paper we focus on the approach introduced by
Atkins et al. [3, 4]. Previous work [5] dealt with examining various
aspects of the fitness of the RS model in [3, 4] for the purpose of im-
age interpolation. In this work we consider the underlying statistical
model, and examine an alternative better aligned with the interpola-
tion problem resulting in improved interpolation performance.

We start with a brief overview of the RS algorithm as proposed
by Atkins et al, then we examine its suitability for the image inter-
polation problem. In earlier work [5] we noted a number of con-
siderations in the algorithm design. At a high level, the original RS
approach consists of two key elements: a classification strategy for
the low resolution image pixels; and a high resolution synthesis (in-
terpolation) strategy, which is based on the classification. In this
approach the neighborhood surrounding each low resolution image
pixel is viewed as a realization of one of M Gaussian generators,
each corresponding to a hidden class model which represents some
image feature. There exists no deterministic relationship between
any particular class, j, and the specific low resolution neighbour-
hood. Each class is characterised by its probability distribution, a
prior likelihood and a Linear Minimum Mean Squared Error esti-
mator (LMMSE), all determined during training. It is then possible
to generate the high resolution pixels corresponding to the observed
pixel values by deducing a posterior class membership probability
distribution across all classes and taking the expectation of the out-
put of the LMMSE estimators over the posterior class distribution.
To determine the parameters describing each of the class models, a
training set of low resolution images are used to together with the
EM algorithm. Given a particular training set, the EM algorithm
is used to determine the parameters of the class models that best
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Fig. 1. Structure of classification based RS

explain the features of the images. At the conclusion of the clas-
sification process, classical estimation theory is used to derive the
LMMSE interpolators.

Firstly, we note that the Gaussian class models as proposed
are not particularly effective in discriminating between semantically
recognizable image features. The use of a common scalar variance
in the classification process effectively reduces the characterisation
of the image source models to sole dependence on the mean vector
of each class. In view of this, we propose the use of multivariate
Gaussian class models which can fully exploit the covariance struc-
ture found within each low resolution pixel neighborhood.

Furthermore, we note the lack of direct link between the classifi-
cation and interpolation aspects of the statistical modelling approach
to RS. Our proposed alternative approach more closely integrates the
interpolation objective into the classification activity so that the pa-
rameters of each class, indeed the classes themselves are chosen a
priori to represent various aspects common to natural images which
should aid in the interpolation process. Specifically, we design these
classes to correspond to edges of varying orientation, profile and rel-
ative postion within the region of interest.

The paper is organised as follows. Section 2 provides a brief
overview of the salient aspects of classification based RS algorithm
relevant to this work. We follow with an analysis of the low res-
olution image modelling aspects of RS and present our alternative
statistical modelling approach in Section 4. Section 5 presents the
details of our novel interpolation specific approach to RS, including
its performance results.

2. SCALAR RESOLUTION SYNTHESIS

Classification based resolution synthesis breaks the familiar image
interpolation exercise into a two stage process illustrated in Figure
(1). The first stage starts with the image being broken into individ-
ual non-overlapping regions centred around pixels of interest. This
is followed by an arbitrary classification of those image regions in-
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tended to cluster regions of similar characteristics together and de-
rive the parameters of each such cluster. Those parameters are then
used in the second stage where LMMSE interpolators optimised
for each set of cluster parameters are used to operate on the same
low resolution image regions employed by the classification process,
producing a corresponding higher resolution approximation.

We will restrict ourselves to a brief overview of the salient as-
pects; for a more comprehensive review please refer to our prior
work [5]. Formally, we write = [n] = z [n1, n2] for the high resolu-
tion image which gives rise to a corresponding low resolution image
u [n]. The low resolution version of the image is obtained using a
conventional filtering and subsampling process, with some reductive
kernel h [K]

uln] =Y h[klz[2n-K|

Associated with each low resolution image pixel u [n], we identify a
neighbourhood Ny, and the vector of samples z [n], which belong to
Na. From z [n], [3, 4] derives a feature vector

| v[n]-|vn]|™¥* v #0
[n]_{ . HO[ . ot[he]rwise

y M
where v [n] is obtained by subtracting u [n] from its 8 immediate
neighbours in MVj,.

The mean-removed, non-linearly transformed neighbourhood,
Y [n], is modeled as a multivariate Gaussian mixture, with PDF

M
py (¥) =Y _ 7oy (v, ) 2)
j=1

Here, j denotes one of M underlying classes, 7; is the prior proba-
bility that J = j, and

—sazly=n;l*

pys (¥,5) = %e (3)

(vr)

Note that each element of Y [n] is being modeled here as an inde-
pendent Gaussian random variable, with a unique class-dependent
mean, and a common class-independent variance, 2.

Given an observed low resolution image v [n], we compute y [n]
for each n, and evaluate the posterior likelihood that the low resolu-
tion neighbourhood vector z [n] was generated by class j, for each
j=1,2,... M. Applying Bayes rule, we find that

, A mexp (525 [y — )
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where the first equality holds by assumption. The parameters p;, 7;
and o are derived by a training process, which aims to maximize

> logpy <yz'|ltj»7fj»0) :

where the y; are drawn from the mean-removed transformed neigh-
bourhood vectors z [n] of a collection of low resolution training im-
ages, u [n]. The “expectation maximization” (EM) algorithm is used
for this purpose. Focusing only on the update equation for the global
variance parameter o then
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where N. ;kﬂ), ug-k“) and 7r§-k+1) are the update equations for the
other parameters.

For synthesis, we first write x [n] for the high resolution image
block we seek to synthesise given a unique low resolution neigh-
bourhood vector z [n]. We model the conditional distribution of X
given Z = z, for each class j, using a multivariate Gaussian, with
mean A ;z+(3;. This leads to the following formula for the expected

value, % [n], of X [n] given z [n]

X[n] = ZPJ\Y (4, [n]) - (Ajz+B;) Q)

Noting that the mode and mean of a Gaussian distribution are equal;
we point out that the MAP estimate, X’ [n], is

%' [n]=A;,z+8 ®)

Jn |jn:argmaxj Py (G,yn])
The parameters, A ; and 3; are derived from a collection of low and
high resolution training images, using classical estimation theory.

3. FEATURE CHARACTERISATION AND
CLASSIFICATION MODEL

The purpose of the non-linear transformation in (1) is to distort the
space of the feature vector used for clustering, thereby placing vari-
able emphasis on different image features to obtain a representative
mixture of classes favourable to the interpolation process. During
the synthesis stage, the feature vector is used to characterise the
low resolution neighbourhood and proportionally identify the mix-
ture model to use for interpolating it. As such, the effectiveness of
this feature characterisation process is critical to both the training
and subsquent interpolation activities.

We note that the non-linear transformation is not insensitive to
variations in luminance. While the transformation promotes closer
clustering of image samples representing similar edge orientation,
the normalisation is insufficient to collapse samples representing the
same edge with various luminance into a single cluster. As demon-
strated in [5], during training this results in the creation of redundant
classes, which model essentially the same feature with different lu-
minances. As a result, individual locations can have a high proba-
bly of membership in several classes, even when the classes repre-
sent important features such as oriented image edges. Futhermore,
this poor semantic association is a direct result of the classification
scheme’s reliance on class mean patterns ft;, as the primary classi-
fication differentiator. This builds an intensity dependence into the
classes which works against semantic association and reveals the in-
herent weakness in the interpolation-independent approach to clas-
sification when used for interpolation purposes. We note the follow-
ing:

1. The classification objective of equation (5) has no depen-
dence whatsoever on the high resolution image, and hence
the synthesis problem itself thus providing no guarantee of
optimal utility in the interpolation problem.

2. The choice of a single scalar variance parameter, o, with in-
dependent Gaussians for each element in the mean-removed
transformed neighbourhood vector Y, reduces the classifica-
tion procedure to a pattern matching exercise. The patterns
are represented by the class centroids p;, while o controls
the degree to which we prefer the best matching pattern over
other, more distant matches.
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Fig. 2. Interpolation PSNR vs number of classes for scalar and mul-
tivariate RS

For the purpose of focusing on the dynamics of the classifcation
approach we opt to train on a randomly selected subset of neigh-
bourhoods from the same image used for testing. This also allows
us to highlight the need for better modeling of the image features.
We note that despite this restriction, the ability of scalar RS to ade-
quately generalise within the same image is limited suggesting that
the classification strategy is having a hard time discovering semanti-
cally meaningful image statistics. Indeed, considering the illumina-
tion dependence of the class models, any small deviation between the
statistics of the image and those represented by the training vectors
can result in the selection of inappropriate LMMSE interpolators.

4. MULTIVARIATE RESOLUTION SYNTHESIS

Consider the case when the mean-removed, non-linearly trans-
formed neighbourhood vector, Y [n], obtained from the transforma-
tion of (1) is modeled as a jointly Gaussian random vector, with a
unique class-dependent mean and a full covariance matrix. These
parameters must be estimated by the EM algorithm.

More specifically, we can now rewrite equation (3) for class j
with mean p; as before but here with a symmetric, positive semi-
definite covariance matrix X;

. 1 1 1
pPyY|J (v,7) = WGXP (75 (y *:u'j)TEj (y*l‘j)>
©)

This leads to the following class probability membership in the mul-
tivariate case

T E.—l/QeXp D(yi S,
pary (G, yi) = M" 3| (D (y5155%5))
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(10)

where 3; is the covariance of the class dependent distribution and
D is the weighted Mahalanobis distance function

1 T -1
D (y; pj5%5) =-3 (v—r;) 55 (y—ny) (1)
Proceeding with the derivation we can show that the iterative update
equations of the other classification parameters remain unchanged.
The 8 dimensional covariance matrix, 3; , is updated with each iter-
ation of the EM algorithm as was the case with the scalar variance o
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Fig. 3. Interpolation specific RS overview

in equation (6).

RS B T k)
% NG Z (v—m;) (v — 1) pary (vai’e )
7 i=1
12)
The classification modelling objective used in the EMA (5) is now

given by
Z lngY (yi‘u/]‘v T E])
i

Figure (2) provides some experimental results comparing RS
with a common scalar variance against RS with class specific co-
variance matrices. It is worth noting that the full covariance RS
algorithm significantly increases the cost of training. However, the
computational impact on the actual interpolation process is relatively
small, since this is dominated by the cost of applying the LMMSE
interpolation operators. Furthermore, as we noted in section (3), we
can observe a progressive reduction of interpolation quality as the
number of classes increases for scalar RS. This arises out of the poor
semantic association with specific image features; namely edges; of-
ten associated with better quality interpolated images. Multivariate
RS delivers improved classification and consequently an increase in
the number of classes generally yields a corresponding improvement
in interpolated image quality.

(13)

5. INTERPOLATION SPECIFIC RESOLUTION
SYNTHESIS

Regions of natural images may be broadly classified into three cat-
egories: smooth regions, textured regions and edges. We focus on
edge regions because they provide both high frequency content to be
synthesized and sufficient structure to have some hope of unwrap-
ping the aliasing effects from the low resolution imagery alone. The
interpolation-specific RS approach introduced in this section differs
from the statistical classification based RS briefly outlined earlier
in a few notable ways. The most significant is that in classifica-
tion based RS we statistically estimate a set of classes broadly repre-
senting the statistical properties of images typical of the training set
through an iterative process optimising a statistical likelihood func-
tion. With interpolation specific RS we create the classes determin-
istically so as to represent various edge profiles. Since the classes are
determined a priori, the training process is now limited to the deriva-
tion of the LMMSE interpolators. The overall system is represented
in Figure 3.

As an alternative to the feature characterisation approach out-
lined earlier, we use reference templates or masks which are then
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Fig. 4. Relative performance of Scalar classification based RS (a,c)
and Interpolation specific RS (b,d).

compared statistically to each image sample to determine an extent
of similarity. More specifically, to characterise an edge we choose to
identify its orientation, its relative position within Ny and its profile.
We could additionally assign a binary parameter for the direction-
ality of the edge, denoting its transition from light to dark or vice
versa. As we shall see, however, this turns out not to be necessary.

Within AV, we identify possible edges through their orientation
0, distance 7 from n, which is the centre of the neighbourhood, and
the profile of the edge, which we model by a single Gaussian blur
parameter o. In this way, our representative edges are described
completely by the triplet (0, 7, 7).

To identify an image feature, the image samples are compared
with a set of normalised edge templates representing a range of edge
orientations, positions and profiles. Each candidate edge template,
to,,0, is a vector of edge samples defined over the same neighbour-
hood No used for the low resolution image vectors z [n]. Specifi-
cally, for each p € N, the value of to,r,o at that location is given
by

T+4py sin(8) —po cos()

1 1 V2o
tG,T,o' [p] - 5 + ;/0

As can be seen from equation (14) the normalisation of the edge
template renders it invariant to luminance variations, so that an edge
of a specific characteristic orientation, position and profile can be
identified without reference to the luminance transition it undertakes
— light to dark or vice-versa. The extent of match between an im-
age feature and a template is measured using the Normalised Cross
Correlation ~y of the template t¢, - - and z [n] given by:

_¢2
P (14)

_{(aln] —Z[n]), (to.r0 — Fo.00)
Vllz[n] =20l - 66,0 — Eo.r.0

(15)

| 2

Table 1. Interpolation PSNR results for classical methods, scalar
and multivariate classification RS and interpolation specific RS.

Method | Bilinear | Bicubic SRS MRS IRS
Cafe 224dB | 23.0dB | 19.4dB | 19.6dB | 25.0dB
Facade 21.4dB | 21.8dB | 21.3dB | 21.6dB | 23.5dB

where Z [n] is the mean of the image sample and %o -, is the mean
of the template.

For interpolation, we adopt the same definitions of x [n] and
z [n] as noted above. But here we can compute the estimated value
x° [n], of X [n] given z [n] directly using

x* [Il] = Ajez|je:argmaxj ~v(t,z[n]) (16)
The parameter, A ; is derived from a collection of low and high res-
olution training images, using classical estimation theory. Note that
unlike equation (8) there is no mean term in equation (16).

To test the relative performance of interpolation specific resolu-
tion synthesis compared to classification based resolution synthesis
we selected two different type of images. The first is very rich in
edges, while the second one includes more smooth regions and hu-
man subjects. Both resolution synthesis interpolators were trained
using the same set of images which did not include the two test im-
ages.

As Figure (4) illustrates the improved performance of interpo-
lation specific RS compared to scalar classification based RS. Nu-
merical results are provided in Table 1 including a comparison with
classical interpolation methods. As anticipated the focus on the mod-
elling of edge regions in the construction of classes results in im-
proved overall interpolation performance.

6. CONCLUSIONS

In this paper we presented an analysis of the underlying model of res-
olution synthesis used for image interpolation. We proposed a novel
approach to RS which is better aligned with the interpolation objec-
tive. By constructing an edge-centric model for the classification and
interpolation of images we were able to demonstrate qualitative and
quantitative improvements in interpolation outcomes.
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