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ABSTRACT

Super-resolution image reconstruction is a powerful method-

ology for resolution enhancement from a set of blurred and

noisy low-resolution images. Following a Bayesian frame-

work, we propose a procedure for super-resolution image re-

construction based on Markov random fields (MRF), where

a Potts-Strauss model is assumed for the a priori probability

density function of the actual image. The first step is given

by aligning all the low-resolution observations over a high-

resolution grid and then improving the resolution through the

Iterated Conditional Modes (ICM) algorithm. The method

was analyzed considering a number of simulated low-resoluti-

on and globally translated observations and the results demon-

strate the effectiveness of the algorithm in reconstructing the

desirable high-resolution image.

Index Terms— Markov random fields, Iterated Condi-

tional Modes, super-resolution image reconstruction.

1. INTRODUCTION

In this work we consider the problem of resolution enhance-

ment from a set of blurred and noisy low-resolution (LR) im-

ages that are also corrupted by aliasing. Indeed, it can be

shown that if the set of LR images are corrupted by alias-

ing and also have different sub-pixel shifts from each other,

the different information contained in each of them can be

exploited to obtain a high-resolution image [1]. This prob-

lem is commonly referred to high-resolution (HR) or super-
resolution (SR) image reconstruction [2, 3].

Several algorithms were proposed in the last years for

SR image reconstruction [1, 3]. In general, as a preliminary

classification, they can be divided in spatial or frequency do-

main approaches. It is well known that SR reconstruction

algorithms through frequency domain are simpler and have

more intuitive SR mechanism than that derived in the spa-

tial domain [2]. Tsai and Huang [4] were the first to restore

a high-resolution image from a sequence of low-resolution,
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undersampled, discrete frames with same displacement be-

tween each other. They used a frequency domain approach

based on the shifting property of the continuous Fourier trans-

form to restore the high-resolution image. In that work, each

low-resolution image was seen as the same signal, but shifted

by different quantities, i.e., the motion was considered purely

translational. Thus, they found more signal frequency com-

ponents, increasing the resolution. A remarkable point is that

they did not consider blur and noise on their work. Later,

other works like [5], extended that frequency domain approach

to include blurred and noisy low-resolution images. Since [4],

several resolution enhancement approaches have been devel-

oped, most of then using a spatial domain context. In fact,

spatial domain methods are able to work with more general

observations models such as spatially varying blurring [1].

Another advantage provided by the spatial approaches is, for

instance, the capability for a priori constraints inclusion. The

most important results were acquired by Irani and Peleg [6],

which turned that work a reference on resolution enhance-

ment problems. They used an iterative spatial domain ap-

proach similar to the back-projection algorithms employed on

computed tomography reconstruction algorithms.

Following a Bayesian framework, we propose an alterna-

tive algorithm for SR image reconstruction based on a Markov

random field (MRF), where a Potts-Strauss model is assumed

for the a priori probability density function of the actual im-

age. Given a set of LR images from the same scene (some-

times referred to as observations), under the assumption that

there exist sub-pixel displacements from each other, we in-

tend to determine these relative displacements among the un-

der-sampled observations and then reconstruct an image on

a HR grid using the Iterated Conditional Modes (ICM) algo-

rithm.

2. THE PROPOSED METHOD

2.1. IMAGE FORMATION MODEL

Consider the high-resolution version f [i, j], 0 ≤ i, j < M, of

a continuous signal f : �2 → � that represents the scene

of interest. Following a lexicographic ordering of f [i, j], a

model for the low-resolution version d[k, l], 0 ≤ k, l < N,
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N < M, of f [i, j], can be given by

d = Df, (1)

where d ∈ �N×N is the vector with components given by

dn =
∑

m δn,m · fm, fm are components of the vector f ∈ �M×M

and δn,m are elements of the down-sampling operator D of

size M2 × N2. In this sense, the LR pixels are defined as a

weighted sum of the related HR pixels. Figure 1 illustrates

these possibilities. Therefore, the D operator under-samples

(a) (b)

Fig. 1. (a) The HR pixel (i,j) is completely within the LR

pixel (k,l) and completely outside the pixel (k+1,l+1); (b) the

HR pixel (i,j) is partially within the LR pixel (k,l).

the vector signal f yielding the observation vector d.

In a more realistic approach, digital images are often blur-

red by the optical system during the acquisition procedure [1]

and also corrupted by noise. In that case, frequently, the blur-

ring process is regarded as a linear, space-invariant operator

and then a blurred vector image b is given by b = Hf, where

H is the M2 × M2 block-circulant matrix that gives the blur-

ring degradation effects with elements given by samples of

the point spread function (PSF) of the optical system. Hence,

after the blurring, a LR version of a HR image f , may be

modelled as

d = DHf + n, (2)

where n stands for the noise in the observations, following an

additive model.

2.2. IMAGE REGISTRATION

The first step in the proposed algorithm is to find an estimate

of the actual image based on a sub-pixel image registration

procedure. Indeed, SR image reconstruction is proved to be

possible if multiple LR images of the same scene can be ob-

tained [7], where the images are necessarily shifted with sub-

pixel precision from each other. Therefore, a first estimate of

the image can be obtained by align all the LR observations

on a HR grid. Figure 2(a) illustrates the case for three im-

ages with different sub-pixel displacements from each other,

where the images are aligned following a reference frame.

Moreover, since the displacements can be different between

each observation and the reference image, a non-uniform in-

terpolation approach can be used to find out an estimate of the

HR image. Figure 2(b) illustrates the last case. For the pur-

pose of this work, in the image registration step, we have used

(a) (b)

Fig. 2. (a) Images with sub-pixel displacements; (b) interpo-

lation on a high-resolution grid.

the procedure discussed in [8] that is a variant of the method

proposed by Irani and Peleg [6].

2.3. BAYESIAN FORMULATION FOR SR

It is well known that HR image reconstruction is an ill-posed

problem. Thus, some kind of regularization is need to reach a

good approximation of the actual image. In fact, we need to

find an estimate f̂ of the HR image given a set of LR obser-

vations dt, t = 1, · · · ,T , each of them modeled by equation

(2). A Bayesian formulation of the problem provides a flex-

ible and convenient way of using the a priori information to

achieve a good approximation of the original scene. In this

sense, the maximum a posteriori probability (MAP) solution

choose the estimate that maximizes the conditional probabil-

ity density of f given all the observations, that is,

f̂ = arg maxf{p(f | g)}, (3)

where g is constructed with all the LR observations d.

2.4. THE ICM ALGORITHM

The Iterated Conditional Modes algorithm was proposed by

Besag [9] as a computationally feasible alternative in com-

puting the maximum a posteriori probability (MAP) for the

actual image given the observations. Indeed, it is known that

MAP algorithms make enormous computational demands due

to the inherent difficulty in computing the MAP estimate. Fur-

ther, close related to Markov random fields (MRF), the ICM

algorithm is not only computationally undemanding but also

ignores the large-scale deficiencies of the a priori probability

for the true image [9]. It is an iteractive procedure and it is

easily shown that for each iteration, the MAP estimate never

decreases and eventual convergence is assured. The method

is based on the equation (4) for the a posteriori probability

of the value of the pixel i, given the observations g and the

current values of all pixels in the neighborhood of the pixel i.

p( fi | g, f̂S \i) ∼ p(gi | fi) · p( fi | f̂∂i ) (4)

In the above equation S \ i represents the set of all neighbors
of the pixel i and ∂i a small set of neighbors of the same pixel,

defined by a neighborhood system. The usual neighborhood
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system in image analysis defines the first-order neighbors of

a pixel as the four pixels sharing a side with the given pixel.

Second-order neighbors are the four pixels sharing a corner.

Higher order neighbors are defined in an analogous manner

[10]. In this sense, f̂S \i is the vector of all current values of

the image excluding the pixel i and f̂∂i is a vector of some

neighbors of fi, following a neighborhood system.

Although it is proposed inside a Bayesian framework, the

ICM is a deterministic algorithm and it is given by

1. Choose a MRF model for the true values of fi;

2. Initialize f̂ by choosing fi as the intensity f̂i that maxi-

mizes p(gi | fi) for each i;

3. For i from 0 to M2 − 1, update f̂i by the value of fi that

maximizes

p(gi | fi) · p( fi | f̂∂i )

4. Repeat item (3) τiter times.

2.5. THE POTTS-STRAUSS MODEL

The choice of a realistic image model is a critical step on

the estimation process. Since MRF allows the introduction

of context information presented on the observations, in this

work, we assume a Potts-Strauss model for the a priori prob-

ability density function of the actual image. The Potts-Strauss

model can be defined by the set of all the conditional distri-

butions given by

p( fi | f̂∂i ) ∼ eβ·�{t∈∂i/ fi= ft}, (5)

where β ∈ � is often referred to as the attraction or repulsion

parameter if it is positive or negative, respectively [11].

Moreover, in the ICM algorithm, we also need to know

p(gi | fi), where in our case the vector g is constructed from

all the observation vectors dt. We assume that p(gi | fi) may

be given by

p(gi | fi) =
1

σ
√

2π
· e− (gi−mi)2

2σ2 , (6)

where mi =
1
C (
∑

j∈∂i
f j) +

1
C fi and C = �∂i + 1.

It is important to note that image models based on a MAP-

MRF formulation usually implies in a uniform smoothness of

the image. This oversmoothness do not respect discontinu-

ities, where abrupt changes occur. According to [12], how to

apply the smoothness constraint while preserving discontinu-

ities has been an active research area. Since [13] introduced

line fields to preserve edges, discontinuity-adaptive methods

control the interaction between neighbors in such a way that

when a discontinuity is detected, the degree of interaction is

adjusted not to smooth the area.

3. RESULTS

An evaluation of the proposed method has been conducted by

processing a set of simulated LR images. Figure 3(a) shows

the 512x512 pixels image that was considerated the actual

HR image. The image was convolved with a 3x3 uniform

rectangular kernel to simulate the blur due to the image pro-

cess acquisition. Then, 16 LR images were obtained by using

the image formation model presented in Section 2.1. In or-

der to simulate sub-pixel displacements, each of the 16 down-

sampling operators under-sampling the HR blurred image by

4 in each direction, 16 times, each time starting from a differ-

ent pixel within the first 4x4 block [14]. Later, each LR image

of 128x128 pixels was contaminated by additive and indepen-

dent Gaussian noise at 40 dB. Figure 3(b) shows the first LR

image. It was considerated as the reference image for the sub-

pixel image registration procedure. For comparison proposes,

Figure 3(c) presents the result of the bilinear interpolation of

the reference image and Figure 3(d) shows the result from the

registration of all the LR observations on a grid of 512x512

pixels.

(a) (b)

(c) (d)

Fig. 3. (a) Actual image; (b) reference LR observation; (c)

bilinear interpolation of the reference image; (d) first estimate

of the HR image based on the sub-pixel image registration

procedure.

As one can see, the registration procedure is able to give

better results when compared with the interpolated image. Al-

though in this simulation we have knowledge of the actual dis-

placements between each LR image and the reference image,

we have estimate the displacement values. We note that the

proposed method for sub-pixel registration has demonstrated

to be very accurate in all conducted experiments.
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In figure 4(a) we present the HR estimate reconstructed

using the proposed algorithm without a discontinuity-adaptive

method and in figure 4(b) the result using a discontinuity-

adaptive procedure. In both the simulations, the algorithm

was initialized with the image in figure 3(d) and the β pa-

rameter in equation (5) was found following the procedure

proposed in [11]. Also, in this experiment we do not take

into account the blur from the optical system in the restora-

tion process. From the presented results, we can see that the

algorithm was able to improve the quality of the initial esti-

mate. We also note that in the most of the experiments, the

algorithm had a fast convergence rate, where 5 or 6 iterations

were sufficient to produce good results.

(a) (b)

Fig. 4. (a) HR estimate without a discontinuity-adaptive pro-

cedure; (b) HR estimate with a discontinuity-adaptive proce-

dure.

4. CONCLUDING REMARKS

We have presented an efficient algorithm for SR image re-

construction based on a Markov random field where we used

the Iterated Conditional Modes algorithm for computing the

maximum a posteriori conditional probability. Indeed, the

results demonstrate that the algorithm can be extremely ef-

ficient in a SR reconstruction framework where the method

has demonstrated good performance both in visual accuracy

and computational cost. We also note that, although we do

not address the image debluring procedure in this work, it can

be easily incorporated into the proposed algorithm. In future

works, we intend to make additional experiments in order to

verify the accuracy of the proposed method when compared

with the Irani-Peleg algorithm and also considering different

levels for the signal to noise ratio in the observations. We also

intent to test the algorithm with other models for the a priori
probability density function of the actual image.
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