
A PATTERN-BASED INTER-/EXTRA-POLATION APPROACH FOR IMAGE SCALING*†

Jen-Hui Chuang1, Horng-Horng Lin1, and Szu-Hui Wu1,2 ‡

1Dept. of Computer Science, National Chiao Tung University, Hsinchu 30010, Taiwan
2AU Optronics Corp., Hsinchu Science Park 300, Taiwan

* This project was partly supported by AU Optronics Corp.
† The authors would like to thank Stanly Huang and Brian Hsieh from AU Optronics, and anonymous reviewers, for helpful suggestions.
‡ Szu-Hui Wu was with National Chiao Tung University. She joined AU Optronics Corp. in March 2007.

ABSTRACT

A novel approach to simultaneous scaling and enhancing of
a digital image is proposed, where efficient code matching is
utilized to classify various edge/corner patterns. Adaptive
schemes of inter-/extra-polations are adopted to maintain a
balance of smoothness and sharpness of the scaled image,
with unlimited scaling factors. Unlike many complex
methods for image scaling and enhancement, our approach is
very simple, making hardware implementation feasible.

Index Terms – Image Scaling, Enhancement, Hardware Design

1. INTRODUCTION

With rapid manufacture growth of large-display, developing
low-complexity image magnification and enhancement
methods for hardware implementation becomes more and
more important. While many works for enhancing scaled
image qualities have been proposed in decades, most of
them are designed for software implementations, without
considering hardware restrictions such as memory
limitations and computing power. This motivates us to
propose a simple scaling approach that can (i) cope with
typical interpolation design, e.g., bi-cubic; (ii) use only
simple arithmetic operations and limited memory buffers;
(iii) enlarge images up to arbitrary scales; and (ix) maintain
sharp object boundaries in scaled image outputs.

Interpolation approaches such as nearest-neighbor, bi-
linear and bi-cubic [1] are commonly adopted in hardware
design of image scaling. Yet blurring and aliasing effects
often come along with these methods. Intuitively, post-
processing methods, e.g., hi-boost filtering [2], can be
applied to enhance image sharpness. However selecting
suitable filter parameters to prevent over-enhancement of
noises for various image qualities would be difficult. Rather
than post-processing, many approaches focus on solving
image scaling and enhancement simultaneously [3-8]. The
basic ideas include estimating local edge directions from
source image patches, and magnifying boundary regions via
directional interpolations. Since edge information is adopted

in image scaling, shaper boundaries can be retained.
Nevertheless, limited scaling factors [3] and costly edge
orientation estimations [4-8] hinder them from becoming
hardware solutions. Other methods, like PDE-based scaling
[9] and super-resolution [10], also produce sharp scaled
images, but the computational complexities are even higher.

For other works on image scaling for hardware design,
Kim et al. propose an area pixel model to scale images and
implement it in an FPGA [11]. However, improvement of
image sharpness is less addressed in this low-complexity
design. In [12], mesh-based triangulation is applied to model
image edges and to control interpolation results. Yet, the
need of image triangulation makes it different from our
usage of simple regular grid processing.

2. PATTERN-BASED INTER-/EXTRA-POLATION

Figure 1. Interpolation and extrapolation for image scaling. The x
and y axes denote image positions and intensities respectively. (a)
An interpolation case. (b) An extrapolation case.

To illustrate the basic idea of the proposed method, some
inter-/extra-polation examples of 1-D signals are given in
Fig. 1. In Fig. 1a, since the underlying input signal varies
smoothly, pure interpolation is chosen to add sample points
between x1 and x2. Contrarily, as shown in Fig. 1b, when the
intensity difference of x1 and x2 is large, a sharp boundary
can be preserved by extrapolating new sample points from x1
and x2, respectively, toward the midpoint between them.

For 2-D scaling wherein new sample points need to be
added in a square whose vertices are a set of 2×2 pixels of a
low-resolution image, a similar processing can be applied.
To that end, the square is firstly classified as a smooth area
or containing predefined object edges/corners. Accordingly,
for the former (latter) case, interpolations (extrapolations)
are performed to generate sample points that produce a
sharp boundary.

(a) (b)

)(xI)(xI

x x

0x 1x
2x

3x 0x 1x 2x 3x

IV - 2091-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

2.1. Edge and Corner Patterns

As depicted in Fig. 2, we define edge and corner patterns in
a 4×4 window, where the square of the central 2×2 area is
the target region for extrapolating new sample points. A 4×4
window size is chosen because it contains more information
than 2×2 or 3×3 window sizes for analyzing various
directions of edges and corners. Besides, since a 4×4
window is also the basic unit for bi-cubic interpolation, our
algorithm can be easily incorporated to the existing
interpolation scheme without requiring additional buffers.

When defining edge and corner patterns, it is assumed
that intensity values of pixels within a 4×4 window are of
two groups. Through analyzing all the two-grouped pixel
combinations, seven pattern categories are derived based on
the central 2×2 pixels, including: A. horizontal type (Fig. 2a),
B. vertical type (not shown for brevity), C. upper-left type
(Fig. 2b), D. upper-right type, E. lower-right type, F. lower-
left type, and G. cross type (Fig. 2c). And each type consists
of edge patterns (e.g., A1-A7), corner patterns (e.g., A8-A11),
and a default case (e.g., A0).

In our definition, an edge direction should be supported
by at least two boundary pixels, and a corner should be close
to one of the central 2×2 pixels. Separation lines (green
arrows in Fig. 2) of the two pixel groups are located in the
middle of the estimated edge/corner areas. Their line
functions can either be computed and stored in advance, or
calculated in real-time. It is worth noticing that each pattern
can actually be represented as a 16-bit code. For example,
pattern A4 can be coded as “X11X 0111 0000 X00X.” This
representation is particularly useful for pattern matching.

2.2. Image Pattern Matching

When scaling an input image, each 2×2 image block is
firstly matched to the seven pattern categories by comparing
their intensity differences. This first level matching involves
only central 2×2 pixels of a 4×4 window. Two pixels, x and
y, are said to be of the same group if their intensity
difference is within a threshold Ti , i.e., S(Ix – Iy) being true
as |Ix – Iy| ≤ Ti . On the other hand, they are of different
groups if the difference is larger than a threshold Te , i.e.,
D(Ix – Iy) being true as |Ix – Iy|≥ Te . If Ti < |Ix – Iy| < Te , it is
not taken into consideration. Accordingly the decision tree
shown in Fig. 3 is adopted to check if a 2×2 block consists
of two pixel groups. (For example, the top layer of the tree is
interpreted as: if (S(I1 – I2)) {…} elseif (D(I1 – I2)) {…}
else {Bi-Cubic}.)

For a 2×2 block belonging to one of the seven
categories, there are two pixel groups inside, say black and
white groups. Each group can then be represented by its
mean intensity, e.g., μb and μw. We further match the block
to edge, corner or default patterns by examining its intensity
distribution in the corresponding 4×4 window. In order to

use a code matching scheme, the code bit of each pixel x of
the 4×4 window is set to “0”, “1”, and “X”, if |Ix – μb|≤ Ti ,
|Ix – μw|≤ Ti , or neither holds respectively. Thus, a 16-bit
code can be calculated and used to efficiently find a matched
pattern. Note that in code matching, the matching priority is
ordered as “edge > corner > default.” The entire matching
scheme has only two parameters and requires only simple
arithmetic operations, making possible hardware
implementation simple and efficient.

Once an edge/corner pattern is classified, various
extrapolation schemes can be adopted to estimate new
sample points from the two color groups in the 4×4 window.
In this work, new sample points are simply colored with μb
and μw, respectively. As indicated later in our experiments,
such a simple scheme often gives sharp edge boundaries, but
may cause certain cartoon effects in some occasions.

2.3. Boundary Continuity

By extrapolating edge or corner in consecutive image blocks
using the finite set of pre-specified separation lines,
endpoints of these lines on boarders of neighboring blocks
may not coincide, resulting in discontinuities along object
boundaries. To overcome such a drawback, a heuristic is
proposed to improve boundary continuity by aligning
endpoints on block boarders. We use an additional line
buffer to record previous endpoints (in DOUBLE precision)
on horizontal and vertical boarders of the current 2×2 block
(green dotted lines in Fig. 2d). As a separation line is
calculated for the current block, these recorded endpoints
are used to modify the original line f so that the new line f’
will result in better continuity in connecting edges across the
boarders of neighboring blocks.

3. EXPERIMENTS AND CONCLUSION

Due to the page limitation, only two experimental results are
demonstrated. For the pie drawing experiment in Fig. 4(a),
we set Ti =0 and Te =1 to exam the enlargement effects of
edges and corners. In this case, the proposed method
produces extremely sharp edge and corner boundaries,
compared with nearest-neighbor, bi-cubic and hi-boost post-
processing methods. Also, unlike hi-boost post-processing,
color consistency of the boundary area is maintained by our
approach. The flower image in Fig. 4(b) gives comparisons
with bi-cubic, EDI [5], NEDI [6] and the proposed inter-
/extra-polation. It is clear that the latter three methods
produce sharper images than the first. Among the three
enhancement methods, NEDI gives best visual appearance,
EDI results in a sharper but slightly noisier image, and the
inter-/extra-polation generates an output quality between
those from EDI and bi-cubic. Also a slight cartoon effects
can be perceived in our result, due to the choice of simple
patch extrapolation for enhancing edges. Though the
proposed method does not out-perform NEDI and EDI

IV - 210

visually, it is more feasible for low-complexity design in
hardware implementation.

To sum up, a novel image scaling method for enhancing
object boundaries is proposed. An efficient code matching

scheme for classifying edge/corner patterns and an effective
heuristic for maintaining edge continuity are developed.
Thus, efficient hardware implementation of the proposed
approach is quite feasible.

Figure 2. Edge and corner patterns. Pixels within a 4×4 window are of two groups, except for the heuristically assigned don’t-care pixels
(un-circled). (a) Horizontal type. (b) Upper-left type. (c) Cross type. (d) Separation line function estimation.

Figure 3. A decision tree for classifying a 2×2 block into seven types.

4. REFERENCES

[1] R.G. Keys, “Cubic Convolution Interpolation for Digital Image
Processing,” IEEE Trans. ASSP, vol. 29, pp. 1153-1160, 1981.

[2] R.C. Gonzalez and R.E. Woods, Digital Image Processing, Prentice
Hall, 2nd Ed., 2002.

[3] S. Bayrakeri and R. Mersereau, “A New Method for Directional
Image Interpolation,” Proc. IEEE ICASSP, vol. 4, pp. 2383-6, 1995.

[4] K. Jensen and D. Anastassiou, “Subpixel Edge Localization and the
Interpolation of Still Images,” IEEE Trans. IP, vol. 4, no. 3, pp. 285-
295, 1995.

[5] J. Allebac and P.W. Wong, “Edge-Directed Interpolation,” Proc.
IEEE ICIP, vol. 3, pp. 707-710, 1996.

[6] X. Li and M.T. Orchard, “New Edge-Directed Interpolation,” IEEE
Trans. IP, vol. 10, no. 10, pp. 1521-1527, 2001.

[7] X. Wu and X. Zhang, “Image Interpolation Using Texture Orientation
Map and Kernel Discriminant,” Proc. ICIP, vol. 1, pp. 49-52, 2005.

(a) (b)

(d)

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

A0 A1 A2 A3

A4 A5 A6 A7

A8 A9 A10 A11

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

C0 C1 C2 C3

C4 C5 C6 C7

C8 C9 C10 C11

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

G0 G1 G2 G3 G4

G5 G6 G7 G8 G9

G10 G11 G12

C0

1 2

3 4

R G

P E

H S

F Q

A

C

B

D

ff ′

(c)

Type A Type E Type F Type D Type C Type B Type G

()21 IIS −

()43 IIS − ()43 IID −

()31 IIS − ()42 IIS −

Root

()43 IIS −

()31 IIS − ()42 IIS −

()31 IIS −

()42 IIS −

()21 IID −

()41 IIS −

()32 IIS −

Bi-Cubic
else

Bi-Cubic

else

Bi-Cubic

else

Bi-Cubic

else

Bi-Cubic

else

Bi-Cubic

else Bi-Cubic

else Bi-Cubic

else

()31 IID −

IV - 211

Figure 4. Experimental comparisons of different scaling methods. (a) Pie drawing results. (b) Flow image results. (The source image, EDI
and NEDI results are downloaded from “http://www.csee.wvu.edu/~xinl/demo/interpolation.html.”)

[8] Q. Wang and R. Ward, “A Contour-Preserving Image Interpolation
Method,” Proc. ICIP, vol. 3, pp. 673-676, 2003.

[9] B. Morse and D. Schwartzwald, “Image Magnification Using Level-
Set Reconstruction,” Proc. CVPR, vol. 1, pp. 333-340, 2001.

[10] W.T. Freeman, T.R. Jones, and E.C. Pasztor, “Example-Based Super-
Resolution,” IEEE Computer Graphics and Applications, vol. 22, no.
2, pp. 56–65, 2002.

[11] C.H. Kim, S.M. Seong, J.A. Lee, and L.S. Kim, “Winscale: An
Image-Scaling Algorithm Using an Area Pixel Model,” IEEE Trans.
CSVT, vol. 13, no. 6, pp. 549-553, 2003.

[12] D. Su and P. Willis, “Image Interpolation by Pixel Level Data-
Dependent Triangulation,” Computer Graphics Forum, vol. 23, no. 2,
pp. 189-201, 2004.

(a) Scaling from 180×180 to 300×300. From left to right: source image, nearest-neighbor, bi-cubic, bi-cubic+hi-boost, and inter-/extra-polation.

(b) Scaling from 75×75 to 300×300. Top row: source image, bi-cubic, and EDI [5]; bottom row: NEDI[6] and inter-/extra-polation.

IV - 212

